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Abstract. The ever-increasing number of interconnected devices in smart
environments, i.e., homes and cities, is bolstering the amount of data
generated and exchanged. These devices can range from small embedded
platforms, such as those included in home appliances, to critical opera-
tional systems, such as traffic lights. However, this increasing adoption
is raising significant security and privacy concerns. Although some re-
searchers have already solved some of these issues, data privacy still lacks
a viable solution, especially when considering a flexible, decentralized ap-
proach to avoid a central overseer. One of the biggest challenges regarding
privacy is the lack of transparency about how data flows are mediated
and regulated as, often, these resources share data with external entities
without the users’ knowledge. We argue that a novel data-sharing con-
trol mechanism is required to properly control users’ privacy and their
respective Internet of Things (IoT) devices. This work focuses on a mid-
dleware layer solution for the IoT devices, which allows the control of
the data generated by the device by its owner. The platform places the
user as an active participant in the data market, behaving as its own
data intermediary for potential consumers by monitoring, controlling,
and negotiating the usage of their data.

The final authenticated version is available online at https://doi.org/10.1007/978-
3-030-58986-8_11.

1 Introduction

The IoT is growing continuously and, according to National Public Radio &
Edison Research [25], homes in the United States have an average of 2.6 smart
speakers, explaining why the number of smart speakers is much larger than the
number of its owners. People are increasingly adopting the concept of smart
homes by acquiring more smart devices, such as smart lamps or thermostats,
helping to save money. Authenticated users can remotely control many devices
via their smartphone, such as refrigerators or garage doors. Some examples in-
clude alerts from refrigerators when items are missing or a pot that can be
programmed to irrigate plants. Along with the usability enhancements, it is also
possible to make homes more secure with wireless security cameras, sensors, and
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smoke alarms. Besides, this can help older people be more independent because
these types of smart homes may include audible warnings or voice-activated alert
systems that can help automate some tasks.

However, what is the cost of having all smart devices connected to the In-
ternet, regarding some fundamental human rights, such as privacy? Also, these
devices can communicate with their owner and other devices while potentially
harvesting data. In turn, this data can be monitored by routers/switches that
can send it as telemetry to their manufactures.

Jingjing Ren et al. [24] conducted a study with 81 different smart devices to
examine data sharing activities. The authors found that 72 of the 81 IoT devices
share sensitive data, such as IP addresses, device specifications and settings,
usage habits, and location data, with third parties that were utterly unrelated
with the original manufacturer, such as advertisers. This type of sharing can
violate the user’s privacy because, for example, according to the GDPR, IP
addresses must be considered personal data as it falls within the scope of ”online
identifiers” or, more precisely, ” Personal Identifiable Information” which is data
that can identify a user [12]. This lack of consumer awareness is rapidly raising
concerns about data privacy [17] as, for example, people who buy a Smart TV
have no idea if their data is being shared or sold with technology providers from
third parties. Worse, the authors found that 30 out of 81 devices shared data
as an unencrypted text file. These examples raise significant privacy concerns,
as those who collect these data streams can infer sensitive information, such as
users’ identity, location, or behavior.

Recent literature [4, 36, 37] highlighted that privacy concerns could be a sig-
nificant barrier to the growth of IoT, highlighting security and privacy as a sig-
nificant IoT research challenge. Some of the identified missing features include:
a) decentralized authentication and trust models; b) data protection technolo-
gies; ¢) data ownership; d) repository data management; e) access and use rights;
f) integration or connection with privacy preservation structures; and g) man-
agement of privacy policies. Currently, managing identity and access control of
”things” in an interconnected world remains an open issue.

This article proposes a middleware layer that allows users to control the
data generated by their IoT devices. Depending on the manufacturer’s firmware,
users can store specific data offline and control data sharing while preserving
their privacy.

2 Related Work

The development of middleware solutions for IoT is an active area of research.
Christoph Haar and Erik Buchmann [14] introduced a firewall between the device
and the network to generate and enforce traffic rules autonomously. It tries to
block what is not essential for operations. The system uses firewall rules to drop
all packets that are not allowed by the set of generated rules. Daniel Amker
Sorensen et al. [32] also propose a system that generates rules based on the
real-time traffic analysis.
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Pi-hole [22] acts as a DNS sinkhole, providing a fake IP address when there
is an IP request for known ad-trackers. The difference between this system and
DNS-based blacklist providers, such as OpenDNS [20], is that the DNS server
runs locally on the RP3, which inherently gives greater control and therefore
privacy.

Security and Privacy for In-home Networks (SPIN) [16] is an anomaly de-
tection module implemented in SIDN Labs. The authors promise to do traffic
inspection and make automatic and personalized blocks by the user. In their
work, the authors promise to block Distributed Denial of Service (DDoS) de-
rived from malicious devices on the network and allow the user to block traffic.
Blocking is done based on patterns (unusual behavior), lists, e.g., Snort [26], or
customized by the user.

More recently, Olha Drozd and Sabrina Kirrane [7] contribute with a Con-
sent Request User Interface (UI), giving users the ability to make a complete
customization to control their consent specifically to their wishes. This system
offers users the possibility to grant permission to process only specific data cat-
egories for chosen purposes, for example. Users can grant permission to process
their heart rate and store it on their device without sharing it with anyone else.
However, this paper only purposes the Ul for the idea. Abduljaleel Al-Hasnawi
and Leszek Lilien [2] provide a solution that enforces privacy policies anywhere
in the IoT, so it is more related to the data itself and the identification of pri-
vacy threats, such as linkability, re-identification, non-repudiation, traceability,
information disclosure, content unawareness and non-compliance. This solution
can be a complement to our solution, helping to detect sensitive information to
be blocked.

Vijay Sivaraman et al. [31] propose an architecture with three components:
Internet Service Provider (ISP), Security Management Provider (SMP) and
Home Network. The SMP component is responsible for the security manage-
ment of access controls. The authors build a prototype evaluation with some
devices, including a Nest smoke alarm; in this case, when privacy protection is
enabled, the system requests the SMP to make an API call to prevent the device
from accessing the log servers (where it sends 250KB per day). Compared to
our approach, the concept is different and can be integrated, because there is
a limitation in the choice of permissions, as only developers can define what to
block for each category (security or privacy), with no options for the regular
user.

3 Conceptual Design

Secure and privacy-oriented data sharing remains an unsolved problem in IoT,
especially for users’ data. Users are generally unaware of how their data is being
handled in the IoT environment, as they assume that the manufacturer has
implemented the appropriate privacy and security mechanisms. However, this is
not the case, mainly from the examples described in Section 1.
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In our approach, users can decide the data and traffic exchanged accord-
ing to their preferences. Users have the option to block all traffic by default
and to make exceptions for some specific domains. Therefore, for example, users
can block marketing/advertising sites and only communicate with the manufac-
turer’s domains. Note that if users choose to block all communications from their
devices to the Internet, some of the features may stop working, as some of these
devices will not work in offline mode. Finally, users will have to choose between
usability and privacy.

On existing routers, users can change the set of rules and block specific traffic,
without the need for a middleware. However, there are no configurable privacy
platforms that show connections made by default by the device (configured by
the manufacturer), and that allow blocking those connections ”on the fly”. The
middleware allows users to monitor incoming and outgoing connections so that
users can verify that the device is running an untrusted program and block or
disable updates to specific resources.

Along with this network traffic monitoring and, depending on the manufac-
turer’s device firmware, users can store data offline on their home router for
future reference. As users can connect with multiple routers (at home or work,
for example), they can choose different permissions for their data depending on
the device context, managing the data’s life cycle. Users can also monetize data
by selling them to external entities.

4 Architecture

The middleware consists of a secure data sharing model. From an architectural
point of view, the system consists of IoT devices, the owner’s smartphone that
acts as Permissions Controller, and a router that acts as a manager and controls
data sharing for external entities.

Figure 1 shows the different components of each device, as well as the inter-
connections between them and the Internet.

There are two types of IoT devices: white-box devices and black-box devices.
White-box devices represent devices on which it is possible to install software,
modify and access the firmware. On the other hand, black-box devices represent
devices on which developers can not control the stack and do not have access to
the software/firmware, so it is impossible to install applications with the level of
granularity necessary to install and run the middleware.

4.1 White-Box Devices

This type of device has two main components: a Middleware and a Sensor APL

Sensor API has the necessary interface for IoT devices. Some manufacturers
allow developers to interact with device data in their applications, products, and
services. In such cases, the Middleware component integrates with the Sensor
API to get access to the data. Then, the Repository receives the input from the
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APT and can store the data locally (this component stores data for seven days
maximum by default, but users can modify this configuration).

Sharing Decision Control consists of a firewall-based solution to control data
sharing. The component uses context-aware access control and owner rules pro-
vided by the Rules component to control data sharing. The Sharing Decision
Control must be deployed locally on the device to provide the owner with the
security of their data under their control.

4.2 Black-Box Devices

When the manufacturer’s firmware is closed/proprietary, it usually uses en-
crypted channels to support all communications, creating an opaque layer where
it is impossible to distinguish between the transferred data. Thus, it is impossi-
ble to implement the middleware on the device, so the router has to perform all
the traffic control (the router also has the middleware).

4.3 Permissions Controller

Our choice to use smartphones as a configuration controller to define rules and
permissions aims to promote usability, as screens or keyboards are generally not
used/available in IoT scenarios.
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For black-box devices, the smartphone sends rules to the router, as it is
impossible to control data sharing locally. For this reason, the only option avail-
able is third-party sharing for external sharing. Fzternal Sharing is related to
the traffic that the device generates by default, which may include communica-
tions with the manufacturer and with entities unrelated to the manufacturer. In
case of black-box devices, the traffic is encrypted and most of the times, devices
communicate directly with an external server, and so, transferred data are not
distinguished, but with this option, users can select the entities they want to
share with (for example, Google is allowed, but Facebook Ads is not allowed).

Users can choose between two modes: primary or advanced mode. The pri-
mary mode has traffic data aggregated by the entity. In a use case based on
Google Assistant, device connections include multiple subdomains of googleapis.com,
but only the Google entity appears to users in primary mode. In this way, all
connections to or from Google are blocked or allowed, according to the users’
preferences. This mode is more accessible for non-technical users to control the
entities with which devices communicate. Thus, users can also know which con-
nections are related to the device manufacturer.

In advanced mode, all traffic is shown by Server Name Indication
(SNI) [9]. According to the same use case, instead of showing only the
Google entity with aggregated traffic, it shows detailed traffic in real-
time (e.g. 192.168.1.6:38578 - 172.217.17.10:[443] 21:0auth2.googleapis.com,
192.168.1.6:36366 - 216.58.201.234:[443] 32:embeddedassistant.googleapis.com),
and users can block or allow specific connections.

As mentioned in Section 3, devices that do not work offline and depend on
communication with the manufacturer, may not work after some traffic block. If
only a few features stop working, users can choose between usability and privacy.
In summary, in this component, the smartphone can display all traffic in real-
time, and it is possible to choose the entities to share the data and specify the
expiry time of these permissions.

For white-box devices, each owner has three main permissions to control the
data sharing: Personal Use, Third-party sharing and Sell Data. In this case, both
the IoT devices and the router implement all the rules defined on the smartphone.

Personal Use

Personal Use has two options: yes or no. When users set the permission to yes,
the router’s database can store the data produced by the device. This option
allows owners to control their data locally, without an Internet connection.

Third-party Sharing

Third-party Sharing has two different components: Internal Sharing and Fx-
ternal Sharing. Internal Sharing represents the data transmission that exists
between the IoT device and the router to which it is connected. Owners can set
different permissions according to the context of the IoT device, for example, if
the device is in the home context, owners may want to store all data on their
router but deny this permission on other contexts blocking the transmission of
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some confidential data. The owner’s smartphone shows all sensors available for
data sharing and allows users to set permissions for their data according to their
preferences. Ezternal Sharing is explained in Section 4.3 and is also available for
these white-box devices. In summary, Ezternal Sharing is related to the traffic
that the device generates by default (communications configured by the manu-
facturer) so that users can manage these communication permissions. With this
option, users can manage (allow or block) those connections made during normal
device operation, but cannot choose other entities to share data.

Sell Data

Unlike External Sharing, which controls only standard device communications,
the sell data option allows users to sell specific data to interested third parties.
The sensors can gather additional data that may be of interest to marketers to
reinforce marketing strategies in a region, creating accurate and personalized ads
contextualized to the interests of a person or region. Our structure allows users
to choose a set of data collected by the IoT sensors and stored in the router’s
database to be shared with external entities (also selected by the data owner) in
exchange for monetary compensation, offering users the possibility to monetize
their data. For example, users can choose to sell data about temperature, but not
about lighting and air conditioning, because they know that a machine learning
algorithm can combine data to determine the presence in a given household.
Note that this sell data option is valid for white-box devices or devices with
data APIs.

4.4 Router

The router has two different components: a Sharing Decision Control and a
Database. The Sharing Decision Control component acts as a firewall between
external entities on the Internet and local devices. This component receives the
rules provided by the mobile application and controls data sharing.

When the device’s Personal Use and the data’s permission on the Internal
Sharing component are synchronized with yes, these data can be transmitted
to the Database, allowing data owners to query them offline. In the router, it
is possible to make the interconnection between the mobile application and the
Database, allowing users to query their data on the smartphone. For devices that
continue to operate offline without connections to the manufacturer, this can be
a way for users to view their data without interacting with the manufacturer’s
online application that stores the data in their proprietary database. In addition
to this, the router also has a web interface that shows the data available for sale.

We choose to place data sharing control on both devices (IoT devices and
router) to ensure that users have their data under control, regardless of the type
of device. As we have black-box devices where we do not control the encrypted
data between the two endpoints of the communication channel, we need to ensure
that users are also in control of their data. The only way to do this is to have the
middleware on the router so that users can allow or deny communications. Be-
sides, this control allows router owners to have their internal permission policies.



8 Patricia R. Sousa et al.

For example, when a new device connects to a router and does not block any
traffic, the router owner can have internal default permissions to block specific
traffic.

5 Evaluation

In this section, we present the setup and details about the implementation of
the prototype, a use case, and results regarding performance and energy con-
sumption.

5.1 Setup

We used two Raspberry PI 3 Model B+ (RP3): one representing a router and
another to represent an IoT device. The IoT device has five sensor modules:
Temperature and Humidity (DHT11), Luminosity (KY-018), LED (KY-016), a
Heart-Rate sensor (SEN-11574) and a GPS (Adafruit Ultimate GPS Breakout).

These devices can simulate some personal assistants, such as Google Home or
Amazon Alexa, as well as smart devices that connect to them, such as LEDs or
thermostats. In this environment, we built a Google Assistant using the Google
Assistant SDK to control by voice the LED connected to the RP3 GPIO pins.
For this setup, we also plug a USB microphone and a set of speakers to the RP3.

We use power to connect the RP3s instead of extra batteries (for example,
power banks). To measure energy consumption, we used a direct plug-in energy
meter [10].

5.2 Implementation

This section presents details of the implementation of the proposed system. We
describe the technical details about the sharing decision control component, in-
cluding internal sharing with context-aware and authentication mechanisms, as
well as the integration between the sell data component and marketplaces.

Sharing Decision Control
Most firewalls have blocking rules that deal primarily with IP addresses. The
relationship between a domain and its IP addresses is slightly loose, because a
domain can have multiple IP addresses that can change frequently. For example,
in the iptables tool, even if the users specify a domain name as part of a rule,
the DNS lookup will be done once, and the tool will create a new rule for the
resulting IP address. Therefore, it is impossible to block any connection from
a full domain name, including all subdomains. Besides, the tool creates a rule
with the first IP address, and if the address changes, the iptables rules will be
out of date.

Another problem is that an IP address can host many domains and, if users
block or allow one of these IP addresses, all domains hosted on it will also be
allowed/denied. Likewise, when we allow an IP that hosts many domains, we
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allow multiple services and create a security problem due to exposure to other
types of services. An example is Cloudflare [23], which provides a large number of
services to websites and sits between the public Internet and a server. Cloudflare
users do not point their DNS to their server; instead, the users point their DNS
to Cloudflare and then point Cloudflare to their server. Therefore, the same
IP address is associated with millions of servers (Cloudflare’s TP addresses).
Therefore, when one of these IP addresses is blocked/allowed, all sites pointed
to them are also blocked/allowed.

Proxy servers are another widely used method of blocking access to websites.
However, without an SSL introspection mechanism, a proxy generally can not
decrypt HyperText Transfer Protocol Secure (HTTPS) and, therefore, can not
know the IP address and content. To drop the connection, we would need at least
information about the IP address/URL. For this setup, we tested Squid [27],
which has an option to decrypt requests transmitted using the HT'TPS protocol
called SSL Bump. However, as HTTPS provides security and privacy, decrypting
these HTTPS tunnels without consent may violate ethical standards and be
illegal, depending on the jurisdiction [28]. From a practical point of view, in this
scenario, we have data similar to an ISP; if we use the proxy, no communication
will be secret, making the system incompatible with the General Data Protection
Regulation (GDPR) with all messages exchanged in WhatsApp or Google, for
example, exposed on the local and remote machine.

For these reasons, we choose a firewall solution based on the SNI. By default,
Transport Layer Security (TLS) [6] connections do not provide a mechanism
for a client to tell a server the name of the server it is contacting. The header
containing the Fully Qualified Domain Name (FQDN) [35] is encrypted, so we
are unable to access that name. To overcome this problem, we choose the SNI
extension for TLS, where a client indicates which hostname it is attempting to
connect to at the beginning of the handshaking process. This field is part of the
ClientHello message of the TLS negotiation (before encrypted communications),
so that we can access the unencrypted hostname.

The main advantage of choosing a firewall solution based on the SNI is that
we can allow /block a specific hostname connection by solving the problems men-
tioned by the other solutions we tested.

For the implementation of this concept, we use an extension for iptables to
filter TLS traffic based on the SNI [34]. In addition, we use a combination of
SNIdump (similar to TCPdump) and whois, to provide the user with real-time
information.

Context-aware Internal Sharing

Context-aware systems can dynamically and automatically adapt to changes
in the environment and users’ current needs without requiring their attention.
There are several definitions of context, such as ambiance, attitude, circum-
stance, dependence, environment, location, occasion, perspective, phase, place,
position, posture, situation, status, standing, surroundings, and terms. There is
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much research on context-aware computing over the years [33, 29, 21], especially
related to self-learning techniques in IoT and decision making.

In this work, we combine some concepts already introduced in other related
works to achieve the goal of defining different identities and access control poli-
cies for a device. The initial goal is to understand the context of the device and
what types of context we want to address. As an example, users can set differ-
ent permissions for their smartwatches, depending on the context (for example,
location: at home or work). In this example, users can decide not to share their
heart rate in the work context, but do not mind sharing the number of steps per
day; on the other hand, in the home context, users can decide to allow the stor-
age of all data. In summary, context-based techniques are essential to automate
some privacy settings in decision making.

However, there is a drawback to this approach, as it can be attractive for
attackers, trying to set the user location to home when the user is actually
at work or mall, to get their benefits (for example, opening the user’s home
window) [18]. To mitigate some of these risks associated only with the context,
in addition to the authentication process, we use a set of sensors with some
extra information, namely WiFi, Bluetooth, and GPS, instead of using only one
Sensor.

In addition to these conditions, it is essential to detect some possible abnor-
mal patterns autonomously. For this, the middleware creates a database with
a history of usage patterns on each device. Thus, if the middleware receives a
request for permission to open a window due to the user’s presence at home, at
a time when the user is never at home according to historical usage patterns, the
middleware should notify and request the user intervention manually to decide
whether the window will open or not. In this example, this feature is vital to
ensure that we are not facing a geolocation attack or other types of attacks based
on changes to sensor data that influence context-based decisions. Therefore, if
any of the predefined conditions fail (in terms of sensor data and usage patterns),
the user will need to intervene and grant specific permissions for those specific
cases manually.

Authentication

For security and testing purposes, the system uses certificates (public and pri-
vate keys) where the router’s owner is responsible for creating the Certificate
Authority (CA) and distribute the certificates.

The system uses Elliptic Curve Digital Signature Algorithm (ECDSA) 256-
bit to generate the CA and an Elliptic Curve Integrated Encryption Scheme
(ECIES) 256-bit key pair to generate a shared key without the need for the
Diffie-Hellman exchange. Elliptic Curve Cryptography (ECC) [15] can provide
the security level relatively equal to the RSA with a smaller key [13].

We developed a Python implementation, requiring the pycrypto library. The
Crypto.PublicKey. ECC module provides facilities for generating new ECC keys,
allowing them to be rebuilt from known components, exported and imported.
We use the Elliptic Curve Diffie Hellman Ephemeral (ECDHE) [19] algorithm
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for client authentication and the implementation is based on two existing imple-
mentations of ECC and ECIES |3, 5].

Sell Data

This concept focuses on the control of data sharing on the user side, not nec-
essarily on the market itself. The idea focuses on linking the middleware to an
external third-party marketplace that does all sales management. For demon-
stration purposes, we integrate with the implementation of a market created
by Xiangchen Zhao et al. [38]. With this implementation, user registration is
manual, and users need to provide the data to the market for sale. For this, the
middleware is ready and provides users with a well-defined API with the data
they choose to sell.

5.3 Results

Regarding performance, we measure the latency that a request/response takes
to reach our device if it has to go through a certain number of iptables rules.
For that, we use iPerf [8], an open-source program that generates traffic to
allow performance tests on networks to measure bandwidth and link quality
between two points. Besides, it measures delay jitter. We generate iptables rules
with random IPs that do not match the tested client’s IP (therefore, the client’s
request needs to test all the rules).

We tested with 0, 50, 500, 5000 and 50000 rules, and we present the results
of UDP jitter (in milliseconds (ms) with standard deviation (sd)) and TCP
bandwidth (in Mbits per second with sd) on the Table 1.

Num. Rules 0 50 500 5000 50000
TCP bandwidth 26.7 £ 1.45(26.4 + 1.84 |25.9 £ 2.65 |16.5 £ 0.78 [3.35 £ 0.48
(Mbits/sec + sd)
UDP jitter 0.43 £ 0.29 |0.38 + 0.42 |0.46 £ 0.29 |0.43 £ 0.41 [4.98 £+ 1.29
(ms £ sd)

Table 1. iPerf measures

There is no significant difference in jitter and bandwidth using 0 or 5000 rules.
These results show that the iptables tool is efficient, and that, despite the in-
creased jitter and decreased bandwidth, when the number of rules is much higher
(50000 rules), the solution remains viable and, therefore, the proposed solution
can handle a large number of rules.

In terms of energy consumed, the RP3 spends 3.8W without services running on
the system. With middleware and a database, the energy consumption remains
the same. When the middleware performs encryption and decryption, the energy
spent is not significantly different, varying only 0.6W up and down.
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6 Security Analysis

This section overviews a threat model and some attack scenarios to perform a
security analysis of our proposal.

6.1 Threat Model

The owner distributes the certificates to trusted devices; therefore, the owner is
responsible for the safety of that component. Assuming that the CA is trusted,
all keys signed by the CA will be implicitly trusted. The role of CAs is to ensure
that a key belongs to a trusted device after authentication between them.
When the IoT device communicates with the router, it knows that it is the real
router (as it belongs to the same certification authority) and not an attacker
who impersonates it. All communications use HT'TPS, and, therefore, all content
transmitted between devices is encrypted.

Regarding context-aware access control, if an attacker successfully attacks the
system, the user-defined assumptions will take action, and a new HTTPS server
that behaves as a router will not be accepted. In brief, a traditional Man-in-the-
Middle (MitM) will not work as HT'TPS certificates will not match. Besides, as
already described in Section 5.2, the user has to manually intervene when there
is a coordination failure in the ambient sensors or based on historical usage
patterns.

6.2 Attack Scenarios

In this section, we present and evaluate some attack scenarios regarding the sys-
tem implementation. We used some set of theorems adapting those used by Afifi
et al. [1] and we added more that we find essential for this approach.

Claim 1. Security against tag impersonation attacks.

As already mentioned, the owner is responsible for distributing certificates to
trusted devices, making that security anchored on the owner.

For filtering traffic and prevent MitM attacks, we chose the iptables firewall
solution. First, contrarily to the proxy solution, we do not need to do MitM
on HTTPS communication to decrypt it, which would make us susceptible to
MitM, as SSL bump already does this type of attack on its own.

SNT also constitutes some impersonation problems [30]. However, a device will
not accept the connection with itself if the certificate does not match the desired
one, so it is not a problem. Also, with iptables, the user can define a permission
that takes effect only during a specific time window so that there are no un-
wanted communications outside the period defined by the user. For an attacker,
it would be challenging to impersonate the certificate precisely during the period
in which the user allows communication, in addition to needing to know which
devices the user has.
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Claim 2. Security against replay attacks.

HTTPS has a server-chosen random number, which is the server’s first response
in the handshake sequence [11]. If an attacker captures and tries to resend a
message, the server must never allow it due to duplicate nonce. As nonce en-
sures that the server cannot reuse old communications, this method protects the
replay attacks.

Claim 3. Resistance to Single Point of Failure.

On white-box devices, users can choose the data to be saved on the router or
each of their devices, using a distributed model, rather than stored in a central
database or cloud. The advantage of this model, unlike a central database, is
that a central database server represents a single point of failure, in which, once
compromised, it compromises the security of all users.

We know that we also have a single point of failure on the router, but we have
reduced the attack surface because, in the event of an attack, it only compromises
one user. Besides, users can choose not to save data on the router, leaving it only
on each of their devices (for a limited time, also defined by the user). With that,
we have a distributed model, even inside the user’s homes.

7 Conclusions and Future Work

We offer a novel middleware to improve the privacy of users’ data on the IoT,
with implementation and evaluation. Middleware gives users the ability to con-
trol the privacy of their data. Also, users can store data to be controlled offline
and to analyze current connections, discarding them according to the user’s
preferences, without delay, extensible to network communications.

Unlike previous work, the developed middleware is independent of the device’s
SDK, as control is placed at the device and router layers, allowing users to fully
control the shared data.

We have a real implementation with an RP3 emulating a Google Home with a
Google Assistant and sensors attached to it, with the middleware integrated.
Based on our evaluation, we can state that iptables are viable in the implemen-
tation, presenting only differences in performance for 50000 rules.

As future work, we will create a real environment with a router with Open WRT
running the middleware that we created and with black-box devices together
with the Raspberry PI’s. It is also essential to enhance the current marketplace
implementations with aggregated data and anonymization selected by each user,
maintaining privacy properties and compliance with GDPR.
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