JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

Hardware security for IoT 1dentity assurance

André Cirne*, Patricia R. Sousa*, Jodo S. Resende', Luis Antunes*

*Faculty of Science - University of Porto TNOVA School of Science and Technology

Abstract—The widespread use of Internet of Things (IoT)
devices makes their security a priority. Among the different
security challenges, identity and authentication mechanisms rise
as the most important. Identity and authentication in IoT are
limited by the device’s computation capabilities and are more
susceptible to physical attacks than common computers and
servers. Regardless, identity and authentication mechanisms are
essential for a secure system.

Researchers have pointed out that hardware, the source of
these limitations, may also be the solution to overcome these
challenges. Systems may include hardware-based cryptographic
implementations to overcome computation and energy limita-
tions. On the other hand, the addition of security hardware can
increase the resilience of a device against hardware and software
attacks.

Our work aims to support these claims by exploring the phys-
ical attacks and other challenges that identity and authentication
are subject to and analyzing possible technologies that may solve
these issues.

For achieving this goal, we preformed a threat analysis to
the IoT identity and used it to guided us through the research.
For each technology, we identified: known security attacks,
employed countermeasures, advantages and disadvantages for
identity assurance. Additionally, we surveyed the literature for
examples of these technologies supporting the device’s identity.

Finally, we were able to create an objective comparison
between the different technologies and identified challenges that
are hampering the extensive use of hardware-based identity and
authentication systems in IoT.

Index Terms—IoT, device’s identity, identity, hardware-based
identity, hardware trust anchors, hardware attacks

I. INTRODUCTION

The Internet of Things is an environment of interconnected
devices that uses the Internet to share data. Virtually any device
can be connected to the network. Smartphones, wearables,
motion sensors, cars, and smart home appliances are just a
few examples of connected devices today. The number of
Internet of Things (IoT) devices connected to the Internet
continues to grow [1] and our daily lives already depend on
them. In fact, they are even replacing us in factories, farms,
and other jobs [2]. This trend will not decrease and, on the
contrary, continues to increase, driven by the emergence of
more modern technologies emerging, such as 5G [3], Big
Data [4] or Fog Computing [5], that enable better connectivity
to end devices, increasing network bandwidth, storage and
computing resources. Therefore, an increase in the number of
Internet of Things (IoT) devices is foreseeable in the coming
years [3].

With the arising of these devices, the need for strong
security policies and controls in the IoT life-cycle urges [6].

Manuscript received April 19, 2021; revised August 16, 2021.

IoT devices are known to be insecure and the development
of security solutions is considered one of its open research
challenges [7], [8]. This problem is caused by a generalized
lack of security standards, along with the desire for inexpen-
sive systems, which means security is not a priority in their
development [9]-[11].

Among the different security challenges in this field [12],
[13], device identity is one of the most fundamental to create
a secure system. Authentication refers to the confirmation of
the origin of an object or person, in this case, often related to
the verification of its identity. Thus, identity management is
the basis for secure authentication methods for IoT. Without
these premises it is not possible to design a secure IoT
system, as we lose the ability to access control resources in a
system or guarantee the veracity of information received from
a device [14]. Despite these facts, the issues we mentioned
earlier limit the implementation of identity and authentication
mechanisms, which make them custom, lacking peer review,
and using slow or outdated cryptographic algorithms that do
not offer the best security.

Furthermore, IoT devices are more susceptible to physical
attacks than other devices, which has consequences for the
creation of IoT authentication and identity systems. Unlike
computers and servers, IoT devices are more likely to be
deployed in unprotected locations where the attacker can have
unrestricted physical access. A simple example is a smart
meter placed inside the customer’s home. His electric bill
depends on the measurements of that device, which means
that he is the person most motivated to tamper with the smart
meter and has unrestricted access to it.

Approaching this problem in a general way, we can con-
clude that protection against physical attacks is fundamental
for the production of secure IoT devices. These devices have
two parts: software and hardware. The software implements
all the logic of the device, while the hardware supports its
execution and enables interactions with the physical world,
which means that there is a relationship between them, as
the software runs on top of the hardware. Regarding vulner-
abilities, the industry has many tools to help us find them in
software, such as code auditors, fuzzers, debuggers, and static
analyzers, but there are fewer for hardware vulnerabilities.
For this reason, hardware vulnerabilities are more difficult and
slower to solve then their software counterparts [15].

To counterbalance, a root of trust is essentially a security
process that starts with an immutable (unchangeable) hardware
identity ingrained into the IoT device. A root of trust is an
immutable process or identity used as the first entity in a chain
of trust. For the most critical applications, a hardware root of
trust can be an important building block for more secure IoT

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

devices. Regardless, this creates a hardware trust anchor.

This type of construction has multiple advantages, namely
guaranteeing the security of the device’s identity from software
and physical attacks, and enabling high assurance systems, due
to the higher level of resilience it offers.

As these anchors are implemented at the hardware level,
there may be the wrong perception that even if the device’s
software is fully compromised, the attacker will not be able to
compromise these primitives [16]. However, if the design can
not effectively resist to hardware attacks, hackers can easily
obtain the secrets of the entire chip. Attackers can use the
secrets to crack identity authentication and data encryption and
steal product design know-how, causing application security
problems.

Therefore, there is a big demand for the implementation of
hardware-level security features [15]-[18].

A. Related Research Overview

Over the years, several literature reviews have been pub-
lished on hardware security and identity that bear similarities
to our work.

Yang et al. [19] reviewed different technologies that can be
used to support the identification and authentication of IoT de-
vices. Throughout their review, Yang et al. explored how each
technology can be used as a building block for new systems
and potential security attacks on those technologies. Our work
also explores technologies with the same goal, but we include
more technologies like Trusted Execution Environment (TEE)s
and secure elements. Furthermore, unlike our work, Yang et
al. do not compare the technologies presented.

Shepard et al. [20] reviewed technologies that allow safe
and reliable execution according to the needs of IoT sys-
tems. During their analysis, they defined a threat model and
evaluation criteria, focusing on the IoT use case, which was
used to compare the different technologies. While our work
follows a similar approach, we explore identity assurance via
hardware security, which means that our analysis includes
other technologies, different threats, and requirements.

Ehret et al. [21] have more generalized coverage of this
topic. His research focused on hardware-based security tech-
niques related to IoT devices. This research goes through the
different components of a IoT device and presents their hard-
ware security threats and possible mitigations. Hu et al. [22]
followed the same research direction, but generalized further
by presenting systems hardware security threats and their
countermeasures. In addition, they reviewed security tools that
can be used to verify device security, for example, to analyze
at the hardware level how information flows within the board
or to check if the device implementation respects its intended
design. Contrarily to these works, our work analyzes the use
of hardware security for a specific purpose, supporting the
identification and authentication of IoT devices. In addition,
we present a threat analysis specifically for this purpose and
relate each threat to its identity assets. We also cover the
different countermeasures for each security threat and map
them onto the technologies presented.

Compared to these previous works, our research is intrin-
sically different from the research mentioned in this section.

To the best of our knowledge, this research is the first that
connects these two realities, identity and hardware security,
analyzing threats from physical security to identity, identifying
potential countermeasures, and mapping them to technologies
that can be used to support the implementation of new solu-
tions.

B. Contributions

Our work aims to provide a comprehensive analysis of
hardware trust anchors that can be used to support the im-
plementation of identity systems for IoT devices. In summary,
the contributions of this research are:

o Threat analysis of physical risks to the IoT identity,
which includes a definition of security assets, goals, threat
actors, threats and hardware countermeasures.

o Analysis of different technologies that can be used as
hardware trust anchors, containing their advantages and
disadvantages, security concerns and examples of their
use to support device identity.

o Discussion of challenges for adopting hardware trust
anchors and future research directions.

C. Outline

The rest of this article is structured as follows:

The Section I-A describes similar research papers on hard-
ware security and device identity, and how we differ from
them. Section II gives a brief introduction to identity and
authentication and their state of development regarding IoT.
The Section III lists the different research challenges that can
be retrieved from the literature related to the device identity
and authentication process, and the IV section elaborates
a threat analysis focused on physical risks to the device
identity. In Section V, we enumerate and analyze the different
technologies that can be used to support device identity. The
Section VI compares the different technologies and relates
them to the research challenges and security threats identified
earlier. Finally, Section VIII provides a summary of our
research.

II. TRADITIONAL VS IOT-BASED IDENTITY MANAGEMENT

One of the challenges of 10T is identity management and the
effective implementation of secure authentication mechanisms.
These two are fundamental characteristics to design a system
with security by default, as both are security primitives to
implement further features [13].

Identity is a specific set of features that allow unique
identification of an entity (something or someone). There
are countless implementations regarding the field of applica-
tion [23]. For example, a human identity could be a fingerprint
or a social security number. In the case of IoT, it can be a serial
number or a cryptographic key.

Authentication is the ability of an entity to prove that it
is genuinely the entity it claims to be. Thus, authentication
attests to the identity of an entity. In cryptography, authenti-
cation has two main classes: data source authentication and
entity authentication. Authentication of data origin refers to

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

information exchanges where it is necessary to ensure that the
information and its source are immutable. As a result, data
source authentication implies data integrity. In contrast, entity
authentication is the corroboration of identity and does not
include any message other than the claim to be a particular
entity [24].

Depending on the literature, entity authentication is syn-
onymous with identification or self-concept. For authors who
consider identification an independent notion, identification
is claiming a specific identity without presenting irrefutable
evidence of this claim [24], [25]. In this work, we will treat
authentication and entity identification as synonyms.

Related to identity and identification, we have Identity
Management (IdM), which is the process of managing identity
information and providing authentication and access control to
information systems. IdM systems handle the relation between
different parties, entities, Service Provider (SP), and Identity
Provider (IdP). The entity is the one that claims an identity.
The SP provides a service to the entity, and, finally, the IdP
has three main functions, entity registration, identity storage,
and authentication, which means it is responsible for the
enrollment of new entities and also the authentication process
whenever an entity needs to access a service [26], [27]. This
fact makes the IdP the core component of an IdM.

On a IdM, an entity can have multiple identities charac-
terized by different identifiers organized in three categories:
something that only the entity and the IdP knows, such as
a password; something that the entity owns, such as a serial
number; and some physical characteristic of the entity, like
fingerprints [26].

With the growth of IdM systems, they started to follow
the isolated model - the traditional identity model in which
SP and IdP functions merge, therefore, identification and
authentication are done directly in the SP itself.

Isolated models are a management burden for organizations
with multiple services, implying identities for each entity [27].
In the case of human identity, multiple credentials are required,
decreasing user usability and weakening overall security. To
respond to these problems, IdM systems began to simplify the
user experience and its management, introducing the so-called
centralized model.

In the centralized model, the SP is separated from the IdP.
Herewith, different SPs can use the same IdP for authentica-
tion, and the entity has a single identity across multiple servers,
which also eases its management.

Despite the advances made by the centralized model and its
paradigms, there are still two problems. IdP servers struggle
to scale, as the increase in the number of identities implies an
increase in the compute and storage requirements. Also, the
centralized model does not support inter-domain authentica-
tion, which is a usability problem for large enterprises [27].

The federated model solves these issues by integrating
multiple IdPs in a single authentication domain - the federated
authentication domain. This model is implemented by setting a
group of agreements, standards, and technologies that enable a
SP to recognize identities from other authentication domain’s
IdP or the creation of maps between identities from different
IdPs [27]-[29].

Based on the federated model principles, multiple protocols
support their implementation, such as SAML [30], OpenID
connect [31], and full-fledged IdM systems, as Keycloak [32]
and Shibboleth [33]. These are just a few examples of imple-
mentations, there are other frameworks and systems, but the
ones presented here are the most widespread [34].

Security Assertion Markup Language (SAML) [30] is a
XML-based protocol to exchange authentication and autho-
rization data between a SP and a IdP, even when they are
part of different authentication domains. This protocol relies
on the SAML Assertion message, a XML containing all the
information required by the SP about the entity and crypto-
graphically signed by the IdP. The SP uses the IdP’s public key
to check the veracity of the message. Shibboleth [33] leverages
the SAML protocol to implement a complete IdM solution,
featuring federated Single Sign-On (SSO) capabilities.

OpenlD Connect [31] is an authentication and authorization
framework, which is implemented on top of the OAuth 2.0
authorization framework [35] by adding an identity layer that
allows the exchange of identity information [31]. The protocol
uses a REST API to delegate conditional access to entity data.
The entity obtains an Access Token from the IdP that SP uses
to access its identity information. Keycloak [32] is an example
of a IdM system based on OpenID Connect.

The growing number of online users and accounts has
driven the evolution of IdM models to be user-centric. Both
protocols are examples of this paradigm. The user controls
the information exchanged between SP and IdP, which allows
users to have different identifiers linked to their identity,
which can be shared with SPs according to their consent.
Furthermore, this paradigm is being explored to create SSO
experiences. The user only needs to authenticate once and will
have access multiple services without having to re-enter their
credentials [36].

Research continues to follow the user-centric paradigm,
addressing privacy issues, such as a lack of control over
personal data dissemination [37]. Others move away from
the classic centralized model and make decentralized IdMs
focusing on preserving user privacy [38]-[40].

With the emergence of IoT devices, the need for specific
IoT IdM solutions has also increased [41]. IoT devices are
inherently different from humans because there is a lack of
identifiers, which makes it difficult to develop solutions.

Lam et al. [42] listed four types of characteristics that can
be used to identify a IoT device: inheritance, association,
knowledge and context; inheritance is the most hardware-
dependent and immutable, and context is the most hardware-
independent, but changeable.

The inheritance category is like human biometrics identi-
fiers. It includes information dependent on the device’s hard-
ware and unique for each device. An example of an identifier
of this type is a Physically Unclonable Functions (PUF) (more
details in Subsection V-F).

The association category uses relationships between devices
that are critical to their functioning. For example, if a wearable
needs a connection to a smartphone to communicate with the
Internet, the smartphone can be an identifier for the wearable.

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

The knowledge category is similar to the “something you
know” for humans. However, the level of assurance is very
different. A human can memorize a password and does not
need to save it anywhere else. On the other hand, a device
needs a mechanism to store the password securely, which
implies risks.

Lastly, the context category uses loT-based sensing data
as identifiers. Context-aware computing connects much in-
formation found in the real world to the intelligence of the
environment. For example, sensor readings produced by GPS
sensors can be considered raw sensor data. Since we put the
data from the GPS sensors in such a way that it represents a
geographic location, we call it context information. However, it
is necessary to consider the quality of context, which depends
on the quality of the physical sensor, the context data, and
the quality of the delivery process. So, these identifiers can
have relatively less quality than others and introduce some
challenges, such as when a device has an owner and multiple
users or when the interactions with the devices change over
time. Both produce changes in the identifiers that make them
difficult to use [42].

Regardless of the identifiers used to authenticate a device,
there is no universal identifier for IoT devices, which is a
barrier to developing perfect IoT solutions. Although each
resource on the Internet has a unique domain name or a
public IP managed by international organizations, this does
not exist in IoT, as each manufacturer has its standards and
protocols. Therefore, in the short term, it is unlikely that a
universal solution to this problem will emerge [43]. However,
researchers are developing ways to authenticate and identify
IoT devices.

Most IoT systems use cryptographic-based entity authen-
tication, which means that device identifiers are used in
conjunction with cryptographic algorithms to enable identity
verification [44], [45].

An example of this type of authentication is Attribute-Based
Authentication schemes, in which device attributes are used to
generate a secret key in a public-key encryption scheme. Every
time the device needs to authenticate, it encrypts a challenge
sent by the server with its key. The server will then decrypt this
message using the expected attributes to reproduce the device
key, and if it can retrieve its challenge from the encrypted
message, the device will be authenticated [42].

There are also systems using other approaches. For example,
the use of private keys and Public Key Infrastructure (PKI)
certificate for each device [46], or adapted versions of IdM
systems to the IoT, mainly when it is necessary to authenticate
devices and users [47].

Beyond that, researchers are working on blockchain-based
solutions [13], [34]. These aim to create fault-tolerant IdMs,
enabling unique identifiers to promote interoperability among
different brands of devices [34].

As we stated earlier, most protocols rely on asymmetric
cryptography and assume the availability of secure storage,
which brings limitations for use in IoT. Asymmetric encryp-
tion is too heavy for low-end IoT processors, which makes
encryption operations slow and energy-intensive [19], [48].
On the other hand, almost all IoT devices do not have secure

storage available due to the inherent cost or expertise required
to implement these features [17]. Therefore, if we want to
continue to use solutions that rely on standard cryptographic
algorithms, IoT must be assisted by hardware components
that ease their execution and create the necessary security
conditions.

III. HARDWARE-BASED IOT IDENTITY CHALLENGES

Since the beginning of IoT, device identity has been pointed
out as an open research challenge [12], [49]. Assessing the re-
quirements stated in the Section II, we can highlight three main
research opportunities for identity management: Lightweight
Cryptography [7], [8], [12], [49], Object Identification [8],
[12], [41], [43], [49], and Secure Storage [43], [49], [50].

One of the limiting factors in IoT is its restricted re-
sources, which limits the implementation of identity and
authentication mechanisms. Several authors point out that
Lightweight Cryptography can solve this problem [7], [8],
[12] as lightweight cryptography is an encryption algorithm or
protocol designed with restricted devices in mind. This type of
solution is evaluated according to requirements such as energy
consumption, implementation size, RAM, and computational
power [51]. Lightweight cryptography does not necessarily
imply a trade-off in security efficiency. Some researchers try
to develop new approaches to cryptographic problems while
respecting device constraints, and others use known algorithms
and protocols and try to reduce them to meet the requirements
of constrained devices [51].

Before designing any security system, it is necessary to be
able to identify each device. An ideal identification solution
should reflect the device’s characteristics in its identification
process [12]. For example, following the idea that IoT devices
can connect to the Internet anytime and anywhere, the device
identity should reflect these properties [52]. Also, regard-
ing this issue, IoT promises that devices will communicate
seamlessly regardless of manufacturer. However, the lack of
standardization undermines this idea. Therefore, creating a
vendor-independent identifier is a priority to overcome this
problem.

Therefore, the challenge of Object Identification is being
addressed through two different approaches. First, researchers
and international organizations are trying to create a global
naming scheme that multiple manufacturers can use and be
able to identify a device, even when it is not connected
directly to the Internet (for example, a sensor that connects
to a gateway via Bluetooth) [49], [52]. On the other hand,
researchers are exploring how we can define identity by
analyzing the necessary resources and available technologies.

For solving the object identification challenge, the need
for Secure Storage resources increases. As we stated pre-
viously in this section, many identities require the storage
of cryptographic keys, and independent of the method used,
the identity needs to be stored securely on the device. There-
fore, researchers are looking for ways to solve this problem,
from creating encrypted storage to dynamically generating
cryptographic keys using the intrinsic characteristics of the
device [25], [50].

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

In summary, identity in IoT has two ways to overcome this
challenge, either by using existing IdM systems and mak-
ing devices capable of handling computationally demanding
cryptographic algorithms or by starting to employ new IdM
systems that exploit lightweight cryptography. Either way,
hardware can be part of the solution.

Any of the technologies presented in this work may be
used to support these research challenges. The relationship
between the two is further developed in the Section VI,
where we compare the different technologies and analyze their
advantages and disadvantages for each research challenge.

IV. HARDWARE-BASED IOT IDENTITY THREAT ANALYSIS

As stated earlier in this paper, [oT devices are more likely
to sustain physical attacks. This trend can be hampered by
developing devices resilient to this type of attack, which means
that the component and design of devices must be protected
from physical attacks.

A threat analysis is a process to identify the security
requirements for the component of each device. This analysis
is based on various characteristics, such as potential intruders,
attacks, and device assets.

Developing a detailed threat profile provides organizations
with a clear illustration of the threats they face and allows
them to implement a proactive incident management program
that focuses on the threat component of risk [53]. This threat
analysis starts with defining the context of the IoT environment
that will be assessed and will follow a threat profile that
includes information about critical assets, actors and threats
to evaluate the requirements for secure hardware-based IoT
identity management.

A. Context Environment

IoT devices have two major components: hardware and soft-
ware. Physical attacks target the device’s hardware. However,
a hardware attack will affect the device’s software due to the
relationship between hardware and software.

As with any computer, IoT hardware has a CPU that
provides computation capabilities, RAM to hold program
storage, Read Only Memory (ROM) to store the boot program
connected by a CPU bus, and multiple buses to hold pe-
ripherals, like persistent storage. However, unlike computers,
IoT devices include all these components on a single chip
called System On a Chip (SoC) [54], depending on the
system’s purpose. For example, it may have multiple WiFi
and Bluetooth radios or general-purpose buses like 12C and
SPI. Finally, but not least, an IoT device has its Printed
Circuit Board (PCB), which provides pads to solder different
components and offers a reliable electrical connection between
them.

IoT devices need firmware to function. Firmware is an
embedded-software in a piece of hardware. The first soft-
ware to run on a device is the bootloader. The bootloader
can be in the SoC, on an on-chip ROM - programmed
during production - or in external memory. The bootloader
is responsible for initializing the different components and
transferring the execution to the user image. Depending on

the device, the user image can be an embedded Operating
System (OS) or a bare-metal application [55]. If the user image
is an embedded OS, the operating system will manage the
different processes, events, and a hardware abstraction layer.
Besides, the embedded OS is also responsible for running the
applications. On the other hand, if a bare-metal application
is loaded, the application will need to handle and interact
with the hardware directly. The choice between an operating
system or a bare-metal application will depend on the device’s
capabilities.

Software and hardware depend on each other, and the
device will not function correctly if one of these parts is
faulty. If the software stack is compromised, it does not
mean the hardware was compromised. Contrariwise, hardware
attacks compromise software. Moreover, an existent Over-the-
air (OTA) update can always patch software vulnerabilities.
On the other hand, hardware vulnerabilities require a new
hardware revision to solve them, so there will be devices that
will never be fixed [56].

Hardware attacks require specialized knowledge and tools.
Therefore, devices that do not require high assurance do not
minimize these risks. Furthermore, security certifications that
address these threats do not assess whether the risks are fully
mitigated but assess whether the device has countermeasures
to disrupt and delay the attacker [57].

Any device’s components can be an entry point to com-
promise its identity. However, attacks on software will not
directly affect the device’s identity but rather the authentication
protocol or will require lateral movement and further exploits
to attack the device’s identity.

As this work focuses on identity assurance through hard-
ware, we will only consider identity threats related to hard-
ware, which means hardware attacks, and attacks that can be
mitigated by hardware. These threats will help us to define the
security features and capabilities of the components mentioned
in Section V. Moreover, during this analysis, we assume
the attacker has complete access to the physical device and
unlimited time to perform the attack.

B. Assets

In a threat analysis, an asset is something that has value to
the company and must be protected. For example, in the case
of a pay-TV network, there is a smart card with a decryption
key that will control access to the network. In this case,
this smart card is an asset as it is crucial to the company
revenue [58].

Our threat analysis does not have a specific product, so
we will only focus on the technical assets needed to achieve
identity and authentication. Any of our assets will require
confidentiality and integrity, which means the assets must be
kept hidden from attackers, and attackers must not be able to
modify them. We are not considering its availability because
we assume that the attacker has physical access to the device,
which means that for this type of attacker, making a service
unavailable is the same as disconnecting it from power.

As we stated at the beginning of Section II, identifiers must
support the identity of a IoT device. We have listed four

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

identifiers: context, association, knowledge, and inheritance.
Context is a technique that allows identifying a device by
analyzing the way the device relates to other devices and the
environment that is associated with it. Regarding association,
it is to something that device can possess for one or two-factor
authentication, such as a hardware token. By contrast, knowl-
edge and inheritance rely solely on the device’s characteristics
to create an identity. The inheritance category uses hardware
characteristics to identify a device and the knowledge category
encompass the information that only the device knows, such as
an authentication token or cryptographic key. Therefore, these
last two identifiers are prone to be compromised by hardware
attacks.

For the inheritance identifier, the attacker may try to clone
the Integrated Circuit (IC) design to steal its identity. There-
fore, the confidentiality of the IC design must be protected.

On the other hand, attackers may also try to tamper with
the device to bypass security features, so the IC design must
protect its integrity.

In addition to the IC design, an attacker needs to have access
to the device’s firmware to clone it. Furthermore, the attacker
may reverse engineer the firmware to find software vulnera-
bilities that can compromise the authentication mechanisms.
Therefore, keeping the firmware confidential will difficult the
cloning process and the vulnerabilities discovery.

Regarding firmware integrity, the main security goal is to
make it impossible for unauthorized code to run on the device.
This can be developed into three attack vectors. The attacker
must not be able to change firmware when stored on persistent
storage. If persistent storage is compromised, the device must
not execute any instructions that could have been tampered
with. Finally, the attacker must not be able to induce temporary
changes in the execution of instructions.

Finally, knowledge identifiers, depending on the device, can
be authentication tokens, passwords, cryptographic keys, or
other information. During this work, we will refer to them as
identity data.

In the case of cryptographic keys, it is essential to highlight
that even if the system does not use them directly as an
identifier, they can be used internally to keep information
secure or authenticate data traffic. Therefore, the keys must
be protected regardless of their type. For public keys, the
goal is to maintain their integrity; for private keys, it is to
ensure their confidentiality. Public keys are used to verify
signatures and encrypt information. Therefore, if a public key
is changed, it can disrupt the signature verification process,
leading to various attacks, from Man-In-The-Middle (MITM)
to malicious updates of OTA. The private and asymmetric
keys are used to identify the device or decrypt important
information. Therefore, if an attacker compromises their con-
fidentiality, they could spoof the device’s identity or MITM
communications.

To conclude, devices must maintain three secure assets: CI
design, firmware and identity data to protect the device’s
identity and authentication capabilities.

C. Actors

Many techniques presented throughout this section require
expensive equipment, in-depth system knowledge, and exe-
cution time. Therefore, not all are within reach of all threat
actors. A threat actor is someone, either a person or a group,
who poses a threat [59]. Threat actors can be adapted accord-
ing to their capabilities and motivation. The capabilities of
threat actors are the combination of resources and knowledge
available to carry out an attack. The threat actor’s motivation is
the level of desire to perform some action and the expectations
(confidence) of success [60]. The threat actor’s motivation
level is related to the time it takes to succeed. A less motivated
attacker will quickly give up on the target if the device has
too many countermeasures that require time to circumvent.
IoT devices have five main threat actors: criminal enter-
prises, industrial competition, nation-states, ethical hackers,
and lay attackers [56]. Criminal enterprises are motivated by
the financial gain they can get from an attack. Typically,
these organizations look for vulnerabilities that enable solid
business cases. For example, Remote Code Execution (RCE)
vulnerabilities in IoT devices to increase the ability of botnets
to perform Distributed Denial of Service (DDoS) attacks. Due
to the nature of these organizations, the budget for these
attacks is high, but their criminal status limits the human
resources they can hire and the equipment they can buy.

Industrial competitors aim to collect information about a
competing device, which means they reverse engineer the
device. This attacker will employ skilled professionals and
have an ample budget to acquire all the resources needed to
carry out an attack.

Nation-states have motivations such as espionage, countert-
errorism, and sabotage. This group has all the necessary means
to carry out complex attacks, with the best and most significant
amount of professionals, tools, and time to plan attacks.

Lay attackers are usually individuals or small groups who
hack to extort money from companies or gain a reputation.
Typically, these groups have limited resources and expertise, so
they will look for another target if they find countermeasures.

Ethical hackers are driven by a curiosity about how a
system works or by the possibility of monetary reward. Unlike
lay attackers, they will not try to make money illegally but
through legal initiatives, such as bug bounties. They may have
the expertise to carry out complex attacks, but they have a
limited budget and time. At the same time, they can gain
access to more expensive equipment through universities and
hackerspaces. When compared to other attackers, they pose
a different kind of risk. Ethical hackers are not trying to
harm a company, but if not dealt with properly, they can
affect consumers’ trust in a company because if a vulnerability
of a known company is disclosed before it is resolved or
properly explained by the company, defamation can result, and
customers may no longer trust the company. The motivation
and capabilities of each attacker are summarized in Table I.
In this table, the attacker’s capability is analyzed using two
characteristics, knowledge and resources, classified as low,
moderate, and extensive.

The motivation was classified as low, high, and extreme,

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

according to the perseverance level of each aggressor. These
characteristics directly impact the attacks that each attacker
can carry out.

Threat actors Capability Motivation
Knowledge | Resources
Cnmmgl Moderate Moderate High
enterprise
Indu suy Extensive Extensive High
competition
Nation-states Extensive Extensive Extreme
Ethlcal Moderate Moderate High
ackers
Layperson Low Low Low
attackers
TABLE I

SUMMARY OF THREAT ACTORS CHARACTERIZATION

D. Threats

Hardware attacks can be divided into two main categories,
non-invasive and invasive attacks, according to the physical
impact on the device. Non-invasive attacks do not require
any preparation of the device to be performed, which means
the attacker can access all required components without any
modification of the device and does not leave any tamper evi-
dence. By contrast, invasive attacks require the removal of the
chip package and target the components inside. Such attacks
require expensive tools, complex techniques, and operating at
a miniature scale. Many times these attacks also imply the
destruction of the chip.

In addition to these categories, some authors also proposed
an intermediary class between the non-invasive and invasive
attacks, called semi-invasive attacks [61], [62]. Semi-invasive
attacks are a subset of invasive attacks that imply the removal
of the chip package but do not require contact with its internal
lines, decreasing its complexity. For the simplicity of this
work, we will not distinguish these attacks from invasive
attacks.

Another way to organize the attacks is in terms of similar-
ities in the objective of the attack. This taxonomy originates
three main classes of attack [62]: reverse engineering, fault
injection, and side-channel attacks and eavesdropping, each
containing multiple attack techniques (Figure 1).

In addition to describing possible threats, during this
section, we will also present the countermeasures a device
can take to difficult their exploitation. These countermeasures
can either be in software or hardware. However, our main
focus will be hardware countermeasures.

Reverse engineering
Reverse engineering is analyzing a fully functional system and
developing a set of specifications describing the system [63].
In IoT, there are two susceptible targets to reverse engineering,
the actual hardware (components and PCB) and its firmware.
With these attacks, the attacker’s goal is to totally understand
the device’s inner workings, find vulnerabilities, or clone the
device.

The attacker employs the most invasive techniques to re-
verse engineer the device’s hardware. Decapsulation, depack-
aging and delayering are processes that use chemicals to

dissolve the chip package. With decapsulation, the attacker
partially dissolves the package keeping the chip functional. Al-
ternatively, depackaging completely removes the chip package
and makes it non operational. Depacking enables the attacker
to delayering the chip. PCBs and chips have different layers
with electrical circuits, so by delayering, the attacker will
polish off individual layers of the chip to better analyze them.
These techniques are used to allow the reverse engineering
of the device. Once a chip is exposed, an attacker can use
high-resolution images or Scan Electron Microscope (SEM)
to analyze it. Moreover, by applying delayering techniques,
an attacker can analyze multiple chip layers [64].

Both decapsulation and SEM can be hampered by active
metal shields [65] or a defensive PCB design pattern [66],
[67]. An active metal shield is a metal conductive layer in
the PCB that shields critical circuit elements. Depending on
the shield, it can be a simple conductive layer or a meander
of conductive lines with resistance sensors attached that will
detect tampering, from physically probing to decapsulation
attempts [65]-[68]. In terms of defensive PCB design, there
are multiple techniques that can be employed. For instance,
critical signals can be routed on deeper layers of the PCB
and overlapped by other electrical paths that their destruction
would disrupt the device’s operation [66], [67].

These techniques can also be applied to reverse engineer-
ing embedded memory to extract stored information. The
information stored on a masked ROM can be decoded, after
decapsulation, with an optical microscope. Moreover, it is also
possible to use techniques such as microprobing to monitor
buses to extract information or even bypass encrypted buses
by reverse engineering the chip design [69].

Micropobing is the act of attaching probes inside a chip
to measure (side-channel attacks and eavesdropping) or in-
ject voltage (voltage glitching) into an electrical line. This
technique expects a decapsulated chip, which means it is
an invasive technique and sometimes requires the creation
of probe pads with Focused Ion Beam (FIB) [56]. FIB is a
beam of ions that can either remove parts of a chip or deposit
material. With this technique, an attacker can cut or reroute
wires at a nanometer scale. As microprobing, FIB equipment
is expensive and requires special knowledge to be performed.
Despite its complexity, when successfully performed, it can
circumvent many hardware security measures, such as active
shields. FIB can be used to tamper with a chip or support
other attacks [56], [70]. Micropobing will always depend on
the success of the chip decapsulation. Moreover, a defensive
PCB design that makes accessing critical signals difficult can
hamper microprobing techniques.

For an attacker that is trying to reverse engineering
firmware, he first needs to obtain it from the device. An
attacker can leverage its access to the device’s hardware and
perform a PCB or logical attack.

The PCB interconnects the different components of the
device. So, to extract the firmware, the attacker can connect
directly to the persistent external storage with probes or
desolder the memory and then use a debug tool to read it. If the
attacker is able to read the firmware, he probably can write a
tampered version of the firmware in the device. Another option

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

Hardware attacks

| |

Side channel
attacks

| { !

Timing ‘ Power

Fault injection

Voltage glitiching EM disturbances Opical disturbances ‘ o D

‘ emissions

Fig. 1. Hardware attacks taxonomy

can be to analyze the different PCB connections and discover
possible features that electrical connections can unlock. SoCs
can often be booted with some security features disabled by
grounding or pulling up logical pins.

Logical attacks exploit logical interfaces to communicate
directly with the device’s firmware, bypassing all hardware
security features. Commonly, IoT devices have exposed logical
ports like Joint Test Action Group (JTAG), Serial Wire De-
bug (SWD) or Universal asynchronous Receiver/Transmitter
(UART), which allow direct interaction with the firmware or
even attaching a debugger. These ports can be disabled in
software, regardless, the majority of the times they are enabled.
If an attacker can communicate successfully with the JTAG or
SWD interface, it will be able to extract the firmware and
interact with its execution. If it is UART, depending on the
exposed software and device’s settings, it may require further
exploitation to obtain the device’s firmware.

After having access to the device firmware, the reverse
engineering process is similar to software. The process is the
same, but researchers need to know the device architecture
and how the firmware interacts with the hardware, which is
often overlooked in other forms of reverse engineering due to
the abstraction provided by operating systems.

Fault injection

Fault injection is an attack that induces processing errors in a
processor, forcing the processor to jump the execution of an
instruction or change the content of a register.

There are multiple ways to create these faults. The more
common ones are voltage glitching and electromagnetic and
optical disturbances (also called laser glitching). These attacks
are non-invasive, with the exception of optical disturbances,
which are invasive attacks. They all have the same objective;
however, the attack vector changes.

Voltage glitching is when an attacker causes a fast change
in a device’s component to affect its operation. Usually,
this attack is executed against a power supply or a clock
signal. This attack does not imply any invasive process. It is
carried outside the component’s package without any physical
modification. This kind of attack aims to push the hardware
to induce an error in the software. A simple example of this

Non-invasive or

Non-invasive
Invasive

Reverse engineering

! Optical emission

1 analysis : Chip and PCB Firmware

Logical interface

PCB level attacks attacks

SEM Decapsulation Depackaging

Delaying

type of attack is documented by Colin O’Flyn [71], which
with a paper clip, performed a power glitch to a Philips Hue
Bridge 2.0’s Electrically Erasable Programmable Read-Only
Memory (EEPROM) to interrupt the communication between
the memory module and processor. With this fault, he was able
to interact with the bootloader shell that is locked. However,
the majority of these attacks are more complex. For instance,
force the processor to jump the execution of an instruction.

Usually, voltage glitching is a non-invasive technique. How-
ever, it can also be performed at a nanometer scale by
attacking voltage lines inside a chip (microprobing). As we
stated before, this technique makes the attack invasive since it
requires decapsulation of the chip.

Electromagnetic disturbances are when an attacker generates
electromagnetic (EM) signals and directs them to cause faults.
This is possible because changes in a magnetic field near a
chip induce alterations in the voltage, which can temporarily
cause flips in the logical levels of a data line.

Optical disturbances leverage the fact that when a transistor
is illuminated with a photon intense light pulse, it conducts
current, which can be used to generate localized faults. This
attack requires decapsulation of the component and lasers to
emit light pulses.

Fault injection attacks jeopardize the code integrity of the
device by executing the code in an unintended way. These
attacks are momentary and not persistent by nature but can
be leveraged to produce persistent errors, for instance, by
attacking the storage interface [72]. Overall, fault injection
attacks require knowledgeable and highly motivated attackers
since these attacks need to be tuned by experimentation
according to the target hardware, which is time-consuming.
Moreover, electromagnetic and optical disturbances involve
high voltages and lasers, which can hurt the attacker if the
necessary safety measures are not taken.

Generally, devices can prevent this type of attack by apply-
ing software or hardware countermeasures. In terms of soft-
ware, there are multiple recommendations that developers may
follow. For instance, random delays can be added to the code
to deflect exploitation, or critical information may be checked
multiple times during execution (for instance, two copies of the
same information stored in different memory regions) to detect

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

any exploitation attempt [73]. The duplication principle may
also be applied to hardware. For example, the device can have
the same function implemented in multiple places and compare
their output to detect tampering attempts. Nevertheless, this
type of approach is expensive [68].

Besides these general countermeasures, there are also
specific techniques for each threat. Devices may have
voltage sensors or monitor the clock signal to detect
voltage glitching attacks [74], [75]. Power or clock lines
are scattered throughout the PCB. Therefore, any attack
attempt will propagate over these lines, making the attack
easily detectable. On the other hand electromagnetic attacks
are localized, which makes them difficult to detect [76].
EM sensors may be used to detect electromagnetic fault
injections [75], [77]. However, their placement must be
properly analyzed due to their limited range. On the other
hand, electromagnetic fault injections can be avoided by
using an active metal shield that protects the SoC from
electromagnetic waves and optical disturbances [68], [78].

Side-channel attacks
Side-channel attacks are non-invasive attacks that aim to
extract secrets from a system by measuring and analyzing
physical parameters like time, power or electromagnetic emis-
sions [79]. The majority of these attacks require the plaintext
and correspondent ciphertext to be known by the attackers.
Timing attacks exploit data-dependent execution time differ-
ences to uncover secret data [79]. For example, in a password
check, if a system compares the password inserted by an
attacker with the correct password character by character, an
attacker could measure the time it takes from the password
being inserted to the feedback received. With these measure-
ments, an attacker could reduce the effort of a brute-force
attack by brute-forcing each password character thanks to
the different execution times depending on each number of
correct characters in his input. Depending on the target, this
attack could be performed by timing responses on its software
interface [80] or measuring CPU cycles [81]. The developer
must mitigate this threat at the software level by ensuring the
same response time independently of the input correctness.
The power consumption of a processor depends on its
current activity, mainly when there are changes in the state
of its components. A precise measurement of the power con-
sumption allows an attacker to identify the current instruction
and estimate changes of bits in memory [61]. Many power
analysis techniques can be used to attack cryptographic sys-
tems. However, the two primary techniques are Simple Power
Analysis (SPA) and Differential Power Analysis (DPA) [61].
SPA relies on the direct observation of power consump-
tion and requires the attacker’s specific knowledge about the
cryptographic algorithm implementation to succeed. DPA is
a technique that does not require this previous knowledge. It
leverages statistical analysis to extract information from a data
set of power traces [82]. Despite not requiring too expensive
equipment, power analysis requires a skilled attacker.
An example of an attack using this technique was when a
group of researchers extracted the cryptographic keys used to
encrypt and verify firmware updates of a smart bulb through

power analysis, which enabled attackers to upload a malicious
OTA update [83].

To prevent these attacks, boards may use voltage regulators
to keep their power consumption steady independently of
the operations that are running. Nevertheless, attackers may
bypass this by probing inside the chip (microprobing) [75].
This process would require decapsulation.

Integrated circuits in operation emit electromagnetic waves.
The principle behind electromagnetic analysis is very similar
to power analysis. It is possible to identify events by analyzing
the electromagnetic signals around a device with electromag-
netic probes. Furthermore, in the case of electromagnetic
analysis, we can also identify the location of a specific activity
by locating the source of that radiation, which is not possible
in power analysis. Finally, similar to power analysis, there
are multiple techniques to analyze these measures. The main
ones are Simple Electromagnetic Analysis and Differential
Electromagnetic Analysis, which are similar to their power
analysis counterparts [79].

Optical emission analysis studies emitted photons by tran-
sistors that change state. Once again, there are two main
techniques, simple and differential analysis [84], which can be
used to retrieve cryptographic keys. Additionally, optical emis-
sion analysis allows attackers to locate the emission source of
this photon, which means it can support reverse engineering
efforts. Finally, these attacks require direct observation of the
different components of the chip. Therefore the chip needs to
be decapsulated. Moreover, these attacks require custom build
tools to be performed, increasing the knowledge required to
execute this kind of attack [56], [85].

A possible mitigation for electromagnetic and optical emis-
sion analysis is to use an active metal shield to protect critical
components. In the previous subsection, we explained that
these shields hinder EM and optical injections. Additionally,
this type of shield prevents emissions generated inside the
package from propagating to the outside, thus, preventing
leakages [68], [86].

Similar to injections, some software measures, such as ran-
dom delays during execution, can be implemented to decrease
the risk of successful side-channel attacks [73].

Side-channel attacks mainly affect the confidentiality of
identity data. The actors that perform these attacks have
extensive knowledge of statistical analysis and the target’s
cryptographic implementations. Regarding resources, both
time, power, and electromagnetic emission analysis require the
same equipment, an oscilloscope, and the necessary probes.
By contrast, optical emission analysis requires specialized
equipment and decapsulation of the chip.

Eavesdropping

Depending on the device’s design, an attacker could eaves-
drop on information from the buses connecting the different
device’s components. This technique could be invasive or
non-invasive, depending on the attack scale and if the buses
are exposed or not. In a non-invasive form, this attack only
requires a logic analyzer, which is not expensive depending on
the number of probes. If an invasive approach is required, an
attacker must use microprobing [87]. Either way, the attacker

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

needs to be able to reverse engineering the signals and convert
them to meaningful information.

The simpler forms of this attack can be prevented by a
defensive PCB design, which means critical signals should not
be routed on the top or bottom layer of the PCB. This way, the
attacker is forced to be invasive and perform more complex
techniques such as decapsulation and microprobing to reach
the same goal, eavesdropping on a signal. Nevertheless, if the
signal is critical to the device, the designer should evaluate its
encryption [67].

E. Summary

Multiple attacks based on hardware can compromise the de-
vice’s identity and authentication capabilities. Throughout this
section, we analyzed the different security objectives to keep
the IoT identity and authentication secure. At the same time,
we listed the attacks that may be used to compromise these
devices and detailed their requirements regarding knowledge
and resources. These facts have a direct repercussion in which
attack a specific threat actor may employ.

Table II summarizes the different attacks by mapping the
requirements needed by the attacker to be successfully. Also,
it identifies the compromised assets and outlines the hardware
countermeasures. In this table, we included microprobing and
FIB as they can be applied to multiple attacks and will impact
its requirements.

During Section V, we will use the countermeasures iden-
tified in this section to assess the level of security of each
technology against hardware attacks.

V. HARDWARE TRUST ANCHORS TECHNOLOGIES

We have identified six technologies that can be used as
building blocks to overcome today’s open research challenges
IoT, True Random Number Generator (TRNG)s, ROMs,
crypto accelerators, secure elements, TEEs, and PUFs. For
each technology, we look at its advantages and disadvantages
for supporting device identity, the existing security attacks and
countermeasures that are typically implemented, and finally,
the systems where they have already been used to support
device identity.

Before analyzing each one, we must reflect on their nature
and how they relate. We can differentiate two distinct groups
in these technologies: basic and composite building blocks.

Base blocks provide elementary resources, and composite
blocks provide multiple resources, which means they can be
broken down into smaller building blocks. For example, a
TRNG is a base block as it only provides random numbers. On
the other hand, a secure element is a composite building block
because it provides various features such as cryptographic
operations and random number generation, which are provided
by base blocks, namely a cryptographic coprocessor and
TRNG.

A. True Random Number Generator

Encryption is the foundation of identity and authentication
solutions. These systems rely on unpredictable and unre-
producible key streams to generate cryptographic keys and

produce authentication challenges, among other things. There
are two random number generators types: True Random Num-
ber Generator (TRNG) and Pseudorandom Number Gnerator
(PRNG). However, for cryptographic operations, PRNGs are
not recommended because of their lack of entropy [88].

TRNG is a random number generator that can generate ran-
dom numbers, without any periodicity, from physical sources.
The TRNGs are distinguished from the PRNGs, used in
most systems, by the quality of the generated numbers. A
PRNG uses algorithms to generate a sequence of numbers
that depends on the initial seed given to the algorithm. The
numerical sequence of a PRNG is deterministic, which means
that an attacker can calculate the PRNG sequence if the seed
is known. Therefore, the seed must be random.

On IoT devices, seed generation have limited entropy
sources, and attackers can have physical access to the device,
allowing them to disrupt these sources. Therefore, TRNG can
be used to overcome these problems by extracting entropy
from the device environment, such as electronic noise [19].
Examples of these electronic noises are the variations of
signals generated by electronic oscillators, which can be
sampled, filtered for possible interference and quantified as
digital bits [89]. However, this construction requires several
oscillators to produce a high quality number [88], which
increases production cost and energy consumption [19].

Electronic noise can suffer external interference, affecting
the quality of the generated numbers. Therefore, researchers
have been using quantum theory to support new TRNG
constructs to solve these problems. In quantum mechanics,
each choice is random and independent of the other. Based on
this, researchers have been using light pulses and analyzing
each photon’s choice or using the time between an element’s
radioactive decay to create TRNGs [90].

1) Security attacks and countermeasures:

TRNGs, as a component, is normally embedded in a device.
Therefore, it does not include security countermeasures and
delegates them to the device. Depending on the type of
TRNG, some attacks leverage the environment bias of these
components to generate weak numbers. For instance, Ring
Oscilator (RO)s based TRNGs can be biased with EM fault
injections [90], at the same time, attackers can perform EM
side-channel analysis to retrieve information about its internal
state [91].

2) Advantages and disadvantages for identity assurance:

IoT suffers from a lack of available entropy. Therefore
TRNGs can be the solution to provide high entropy numbers
in an IoT platform.

On the other hand, TRNGs have several disadvantages. They
increase the cost of the device and its power consumption.
Moreover, common TRNGs that do not use quantum physics
are susceptible to environmental biases, which means threat
actors with physical access to the device can take advantage
of this fact and attack the generated numbers.

3) Implementations:

TRNGs are included as a base component of other more
complex. For instance, any identity system that uses a Trusted
Platform Module (TPM) or Secure Element (SE) will inher-

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

Identity assets Required capabilities
Threats Identity data Firmware IC design Knowledge | Resources | Motivation Hardware Countermeasure
Confidentiality | Integrity | Confidentiality | Integrity | Confidentiality | Integrity ;)
Voltage glitching No No No Yes No No Moderate Low High : \Ckl]cl):;;éii;enr;o;:nsors
- Multiple voltage sensors
EM disturbances No No No Yes No No Moderate Moderate High - Active metal shield
- EM sensor
Optical disturbances No No No Yes No No Extensive Extensive High - Active metal shield
Timing attacks No Yes No Yes No No Moderate Low High
Power analysis Yes No No No No No Moderate Low High - Voltage monitoring
EM emissions analysis Yes No No No No No Moderate Low High - Active metal shield
Optical emission analysis Yes No No No No No Extensive Extensive High - Active metal shield
SEM No No No No Yes No Extensive | Extensive High i SZ;‘EV:Si“‘/‘:‘EICg“i‘;gH
Decapsulation No No No No Yes Yes Extensive Extensive High : gz;le‘,;sir\?:tglcglg::ign
Depackaging No No No No Yes Yes Extensive Extensive High - Defensive PCB design
Delaying No No No No Yes Yes Extensive Extensive High - Defensive PCB design
PCB level attacks Yes Yes Yes Yes No No Low Low Low
Logical interface attacks Yes Yes Yes Yes No No Low Low Low
Eavesdropping Yes Yes Yes Yes No No Moderate Low Low - Defensive PCB design
Microprobing N.A. N.A. N.A. N.A. N.A. N.A. Extensive Extensive High - Defensive PCB design
FIB N.A. N.A. N.A. N.A. N.A. N.A Extensive Extensive High
TABLE I

RELATION BETWEEN THREATS, ASSETS AND REQUIRED CAPABILITIES

ently use a TRNG since TRNGs are fundamental part of these
components.

An example of the explicitly use of TRNGs in identity
systems is the work of Yang Su et al., in which a decen-
tralized machine identifier for electric vehicles was developed
employing a TRNG module for the generation of the vehicle
identification [92].

B. Masked ROM and OTP memories

Non-Volatile Memory (NVM) is a type of memory used
in devices to store information persistently. There are multi-
ple families of NVM which differentiate themselves by the
employed technology and the number of times they can be
rewritten. Among the different types, the ones that only allow
a single write operation may be used in a system to support
security operations. For instance, it can be used to implement
a Root-Of-Trust (RoT) or store public keys [93].

There are four types of one-time writable memories, masked
ROMs, floating-gate One-Time-Programmable (OTP)s, fuses
OTPs, and anti-fuses OTPs. These last three are called OTP
memories because they can be programmed in the field,
offering more flexibility than a masked ROM, which can only
be set during fabrication [94].

Masked ROMs have the information hardwired in the chip
design, which means the data to store needs to be known
before the production of the component since its electrical
connections are rearranged to represent the information that
needs to be stored. The significant advantage of this type of
memory is its low production cost when a large amount of
memories storing the same information is required. At the
same time this is a disadvantage for small deployments [93],
[95].

Floating-gate memory is a type of memory that leverages
floating-gate transistors to store information, allowing them to
be reprogrammed and erasable in the field [96].

Floating-gate memories can be erased by exposing them to
a source of Ultraviolet (UV) radiation. This is possible since
the packages of these memories have a quartz window that

can be uncovered to irradiate the floating-gates [93]. Floating-
gate OTPs follow the same working principle of floating-gate
memories but have the floating-gates shielded to ensure they
are not reset by radiation.

Eletric-Fuse (eFuse) OTP memory is constructed with a set
of fuses that are blown to represent data. This operation is
done by applying a high voltage to the fuse, which can be
done in the field [97]. The working principle behind an eFuse
is electromigration, the process by which material is gradually
transported in a conductor. eFuses are constituted by conduc-
tive metal lines that, when exposed to high voltages, resistance
increases and makes the circuit open due to electromigra-
tion [98]. However, in terms of data retention, electromigration
introduces disadvantages. eFuses are susceptible to re-growth
issues, where metal lines unintentionally connect, changing the
stored data [99].

Anti-fuse OTP memory is similar to the Fuse OTP but
uses an anti-fuse on its construction. An anti-fuse is an
electronic component that, when unaltered, does not conduct
electrical current, but after being exposed to a high voltage, it
becomes conductive. This change is used to store information
permanently in memory [97].

1) Security attacks and countermeasures:

The main objective of read-only memories is to make
data unchangeable. With the exception of floating gate OTPs,
there are no known attacks to this part. As we stated before,
since floating gate OTPs are based on floating-gate memories,
attackers may try to bypass its shield and expose it to UV
radiation to be able to write it again [100]. eFuses suffer from
the re-growth issues, but we have not found any literature
exploiting this fact to create an attack to compromise the OTP.

On the other hand, since these memories have information
that can be interesting to an attacker, it is essential to assess
how easy it is to retrieve the stored information. The presented
memories have very similar protection levels. To retrieve the
information, an attacker must depackage and delaying the chip
and then use an high-resolution optical microscope to read
its information manually [69], [100]-[102]. Another option is

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

to use an SEM to retrieve the information. However, this is
not possible on anti-fuse OTPs [98]. All these techniques are
invasive, requiring expensive equipment and manual work to
retrieve the memory data.

To mitigate these risks, device designers employ active
shields protecting the memories that will erase their content
or damage the device if any tampering attempt is detected.
Nevertheless, if not backed up by batteries, this kind of
protection will only work if the device is power-on. Therefore
it will not stop offline attacks.

2) Advantages and disadvantages for identity assurance:

Masked ROM and OTP memories are cheap options to store
information that can only be read. Despite that, they also
have several security risks which cannot be ignored for high
assurance deployments. An attacker with physical access to the
device can replace these with similar ones but with different
content since devices do not have mechanisms to ensure the
integrity of the memory itself. Moreover, for each memory
type, specific attacks can be leveraged to change the content
of these memories [101], [103]. Therefore, masked ROM and
OTP memories bring advantages for systems that require a
low-security assurance level. However, if these components
are used for other assurance levels, their security risks need
to be mitigated.

3) Implementations:

Masked ROM and OTP memories are used as building
pieces for more complex systems. The most common use of
these memories is to provide a RoT, which is why they are
included in most SEs (Subsection V-D) [104]. More recently,
researchers have been using these components as RoT in
the Arm Trust Zone system (Subsection V-E) as they do
not provide a default secure way to store information [105].
Another use for these memories is to enable and disable
features in a device. For instance, many SoCs use fuses to
disable debug capabilities, such as a JTAG or UART port [17].

C. Crypto accelerators

Crypto accelerators offer a high throughput in cryptographic
operations. These components may or may not include coun-
termeasures against known attacks and are mentioned in the
literature with multiple names, such as a custom processor and
crypto array [106]. We will follow the Bossuet et al. [106]
taxonomy and present four types of components: General
Purpose Processor (GPP)s with crypto acceleration, hardware
crypto coprocessors, crypto processors, and crypto arrays.

GPPs with crypto acceleration are Central Processing Unit
(CPU)s that have dedicated instructions for cryptographic
operations. These specialized instruction sets allow programs
to take advantage of dedicated hardware for cryptographic
operations, which is faster than running these operations on
a general-purpose hardware. However, this type of solution
does not offer any other feature, which means it depends on
the GPP for secure storage and preventing hardware attacks.

The crypto acceleration in these GPPs is usually imple-
mented using specialized Arithmetic Logic Units inside the
GPP to provide a low overhead connection to the GPP using
internal buses.

Examples of GPPs with crypto acceleration are the Intel
CPUs with the AES-NI instruction set [107] and ARM CPUs
with the ARMv8 Cryptography Extension [108].

Hardware crypto coprocessors are a logic devices or hard-
ware modules dedicated to executing cryptographic operations.
These coprocessors cannot be programmed are entirely depen-
dent on a processor to operate, to the point of not having any
storage to store secrets. However, these components are more
flexible than GPPs with crypto acceleration, enabling reconfig-
uration of the algorithms, since they are typically implemented
on top of Field-Programmable Gate Array (FPGA)s [106].

A crypto processor is an independent processor that is spe-
cialized in cryptographic operations. In contrast to GPPs, these
processors protect their secret keys. The keys are typically
generated inside the processor, stored in a dedicated memory,
and transported in a dedicated bus. All these measures are
implemented to ensure that the system can only interact with
the key by performing a cipher or decipher operation [106],
[109]. Nevertheless, countermeasures against more intrusive
attacks will vary according to the mode.

An example of a crypto processor that can be found in the
majority of the computers is the TPM.

Hardware TPMs are secure crypto processors that im-
plement a specification that the Trusted Computing Group
(TCG) created to establish trust in a computation system.
Namely, hardware TPMs must have the appropriate hardware
protections to provide three RoTs, storage, measurement, and
reporting [110], [111].

TPMs have registers to store measurements of each soft-
ware that runs during the boot process of a system. These
measurements provide a chain of trust, allowing detection of
any tampering attempt of the boot process. In addition to that,
they have a set of asymmetric key pairs which can be used
for encryption and signing [110]

These two features allow the production of signed reports
of the system’s software configuration and, at the same time,
decipher data only when the system matches a specific state,
which is the base for Trusted Computing.

TPMs offer a secure random number generator and cryp-
tographic engines according to their version. For instance,
the most recent version, 2.0, offers RSA, ECC and AES
cryptography engines. All these features are backed up by
tampering-resistant hardware. [112]

Finally, a crypto array is a crypto accelerator where we
have multiple cryptographic processing elements that work
together with a GPP to provide a fast parallel computation
of cryptographic algorithms. The primary use of these com-
ponents is VPNs, which require handling multiple ciphered
connections simultaneously [106]. Therefore, they are neither
directed nor used in IoT since they do not need to handle
multiple connections simultaneously.

1) Security attacks and countermeasures:

Generally, crypto accelerators do not offer security counter-
measures to prevent hardware attacks, since they are included
in more complex systems. Thus, this group of components has
been targeted by multiple attacks. For example, it is known
that Intel AES-NI is vulnerable to voltage glitching [113] and
side-channel attacks [114]. An example of an attack against

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

crypto coprocessors is the power fault injection attack against
the coprocessor presented in the PlayStation Vita [115].

Regardless, some of these components may offer security
features. For instance, usually, TPMs use the same processors
of SEs. Therefore they inherit features like active metal shields
and voltage monitors.

Despite this, it is important to remember that the level of
protection of TPMs will vary. By definition of the TCG, TPMs
need to be certified with Common Criteria Evaluation Level 4,
which means the component is methodically designed, tested,
and reviewed against the TCG security profile [116]. The TCG
security profile defines that TPMs must be protected against
physical hacking attempts. In addition to the Common Criteria,
TPMs are certified with the FIPS 140-3 certification [117].
This certification has multiple assurance levels. Level 1 of
this certification does not require any specific physical security
mechanism and level 2 requires that the component shows evi-
dence of any tampering attempt on the plaintext cryptographic
keys and critical security parameters. Mechanisms to detect
and respond to physical attacks are only enforced in level 3
of the certification [117]. Typically, TPMs are certified with
level 1 or 2, which means that TPM designers do not need to
have protections against invasive attacks but instead need to
make the component tamper evident.

2) Advantages and disadvantages for identity assurance:

One of the limitations of implementing security features in
IoT devices is that we have a limited development budget and
minimal hardware in terms of computation capabilities. There-
fore, crypto accelerators can be the solution when devices do
not have the capability to run cryptographic algorithms.

GPPs with crypto acceleration are the cheapest and easiest
way to include crypto acceleration in an IoT device since
it is not a separated component but instead embedded in
the device’s main CPU of the device. To benefit from these
capabilities, developers only need to ensure that their operat-
ing system and cryptographic libraries use these specialized
instruction sets [17]. Thus, making it easy to integrate at the
software level with the rest of the system.

Another way, but requiring more adaptation, is to use crypto
processors. These components are independent components
that must be added to the device and connected to a general-
purpose bus. At the software level, these components typically
provide a software stack that can be used to leverage their
capabilities.

Finally, cryptographic coprocessors are the one that brings
more disadvantages. It requires low-level integration with
access to GPP’s internal buses. However, it has the advantage
of being reconfigurable if needed.

3) Implementations:

GPPs with crypto acceleration are common in commercial
processors. As we stated before, AES-NI and ARMv8 Cryp-
tography Extension are examples of this. Thus, there are many
IoT identity systems that, intended or not, already leverage this
extension to accelerate their operations.

Crypto-coprocessors and crypto processors are used to ac-
celerate cryptographic operations when limited controllers are
used. For example, Pearson et al. used a microchip crypto-
graphic coprocessor to accelerate authentication and encryp-

tion operations with the cloud. As a bonus, this coprocessor
also offers storage for cryptographic keys, which was used
to store the authentication keys [118]. Another example is the
use of TPMs. Due to its widespread, multiple solutions include
this technology as a way to attest its boot and store its device’s
cryptographic keys [119]-[121]

D. Secure elements

A Secure Element (SE) is a tamper-resistant component
that offers a set of security primitives, such as managing
secrets or running applications securely [122]. This type of
component cannot be easily forged or copied and has a unique
identifier [123].

The concept of SEs was introduced by the GlobalPlatform,
an initiative of different industry stakeholders to create spec-
ifications and standardization for secure components [122].
These components are also commonly called smart cards. In
this work, we will use these two nomenclatures interchange-
ably.

There are three main form factors for SEs: Universal Inte-
grated Circuit Card (UICC), which can be found in credit cards
and sim cards, in a microSD form factor, and an embedded
chip in the device, the so-called embedded Secure Element
(eSE) [124].

A SE is a SoC with an independent CPU, RAM, EEPROM,
and ROM in a small form factor. For reference, inexpensive
smart cards have 12 to 144 kilobytes of EEPROM storage, 6
kilobytes of RAM, and 200 kilobytes of ROM [125]. More-
over, current smart cards have different interfaces to interact
with the world. Initially, they used serial communication, but
nowadays, with the proliferation of smartphones is common
to find smart cards with Near-Field Communication(NFC) or
even Bluetooth interfaces [126].

However, SEs differ from common embedded systems as
they have multiple layers of defense. For instance. an attacker
trying to decapping the SE’s package would find an active
current-carrying layer, that in the case of being break would
destroy the information carried by the card [104]. To mitigate
probing attacks, SE employs ciphered bused between the
different components, and many times the, PCB paths are
scrambled to difficult any attempt of reverse engineering [127].

SEs are susceptible to Side Channel and Fault Injection
attacks. The preferred attack vector is power analysis, for side
channel attacks in SEs is power analysis [128].

Usually, SEs mitigate these attacks in software, designing
cryptographic algorithms that have constant execution time
or introducing random delays in execution (for instance, in a
stream of bytes when XORed with a key, the operation is not
performed in a sequential order but in a random order) [104].
On the other hand, fault injection attacks can be mitigated
by detecting or hampering the attacks. SEs employ sensors to
detect fault conditions, like unusual events in the voltage or
clock supplied to the card. In addition to these, they can also
implement some software measures. Checksums prevent in-
duced changes in memory. Random delays can hinder attacks,
and execution or variable redundancy, where we have multiple
copies of the same information in multiple places, can be used

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

to detect tamper attempts. Each SE’s manufacturer employs
the measures he considers necessary to achieve the required
assurance level.

In the past, as SEs were mainly used for a single application,
the application and operating system were developed together
and stored in ROM. However, this approach makes the de-
velopment difficult since developers need specific knowledge
about the smart card intrinsics. At the same time, the final
product would be dependent on the specific smart card model
and could not receive updates because it was stored on
ROM. Nowadays, smart cards deploy the operating system and
the applications independently to overcome these limitations.
Smart card operating systems are minimal, provide hardware
abstraction to applications, and are typically deployed in ROM,
which means they cannot be changed after production. On
the other hand, applications use the Application Program-
ming Interface (API)s provided by the operating system and
are stored in Electrically-Erasable Programmable Read-Only
Memory (EERPOM), which means they can be changed over
time. Moreover, many smart card operating systems support
virtualization, enabling the deployment of multiple applica-
tions in the same smart card independently [129].

The GlobalPlatform standards have contributed significantly
to creating multi-application smart cards, promoting security
and inter-operability independently of the operating system.
From the wide range of standards, it is important to highlight
the GlobalPlatform Card Specification. This specification de-
fines a set of logical components that enable secure multi-
application smart cards and the different procedures and APIs
to manage and install applications in the card. Moreover, the
GlobalPlatform Card Specification details how we can manage
the communication from the outside world to a specific
application in multi-application environments [129].

Smart card models offer a set of security primitives backed
up by specialized hardware coprocessors. Normally, this list
includes asymmetric and symmetric cryptographic algorithms,
hash functions, and a true random number generator. The list
of available algorithms will vary depending on the smart card
model [104].

1) Security attacks and countermeasures: Even though SEs
have limited computing power and memory capacity, their
security requirements are high. SE’s threat model expects the
information stored inside the card is kept secure even if the
attacker has unlimited access. Thus, smart cards employ all
the countermeasures we presented in Subsection IV-D.

SEs use multiple anomaly sensors to detect unintended
execution conditions such as temperature, voltage, clock, and
electromagnetic variations. If an unusual condition is detected,
the SE will react to it. Depending on the devices and the sensor
in question, the device can automatically reset itself or halt its
execution until the working condition are regularized [104].

Over the years, multiple side-channel attacks have been reg-
istered against smart cards. Because of this, SE’s software is
designed with multiple lines of defense to prevent information
leakages, such as constant execution time for cryptographic
operations, memory masking when critical information is
present in memory, and a randomize manipulation of data
given by the user. In addition to software countermeasures, SE

also have active metal shields that hinder some side-channel
attacks, as explained in Subsection IV-D [104].

In addition to these measures, smart cards are designed
to discourage reverse engineering. Critical parts of the SE
internal design are randomized, and the active metal shield
also hamper invasive attacks or SEM [104].

The security features of SEs are guaranteed by two certifica-
tions, the Common Criteria and FIPS 140-3 [117]. Normally,
SEs are certified with the assurance level 6 of the Common
Criteria, which implies a semiformally verified and tested
design with a security profile created for this purpose [130],
and level 3 of the FIPS 140-3, which enforces tampering
protection and response to attacks [117].

2) Advantages and disadvantages for identity assurance:

Including SEs in IoT devices enables very constrained
devices to overcome their hardware limitations to perform
security operations. SE offers high-security assurance with low
energy consumption. Moreover, depending on the application,
there are different types of smart cards. In a more complex
setup, a device can leverage multiple application cards, to have
various applications inside the SE. In simpler systems, smart
cards that only offer a limited set of features can be used.

No matter the choice, smart cards are not expensive. Mul-
tiple application cards are sold for two dollars at the time of
this writing.

On the other hand, depending on the system design, the
device may need to store a PIN to unlock smart card func-
tionalities. Therefore, in a production system, using a SE
will require other security mechanisms to solve this problem.
Moreover, even with different form factors, adding a SE means
adding another component, increasing the device’s size and
complexity. Finally, if a SE application needs to be created,
the development team will need to get familiarized with a new
technology and development Kkit.

3) Implementations:

SEs have been used by multiple researchers and solutions to
securely store a cryptographic key that identifies devices and
offload cryptographic operations [131]-[133]. For instance,
in academia, Jeon et al. [132] proposed SEs in LoRaWAN
nodes to prevent leaks of communication keys used in the
LoRaWAN protocol. At the same time, in the industry, for
example, Bosch security cameras use SE to store cryptographic
keys and handle updates securely [133].

Other researcher have leveraged the fact that some SEs
have Near Field Communication (NFC) interfaces to develop
solutions that support remote identification and local identifi-
cation [134], [135]. An operator can physically identify the
device using a smartphone with NFC, mitigating problems
related to labels that could be tampered with or even eaves-
dropped on by an attacker [135].

The use of SEs in military Unmanned Aerial Vehicle
(UAV)s has also been studied. Any information stored in a
military UAV must be kept secure, even if the enemy captures
the UAV. With the current development of autonomous UAV
fleets, researchers have proposed the inclusion of a SE in each
drone from the fleet and use it to store any information that
would compromise its mission or the rest of the fleet [136].

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

E. Trusted Execution Environment

A Trusted Execution Environment (TEE) is a set of software
and hardware that provides isolated execution and storage
environments from the main operating system. Its primary
objective is to assure information security and privacy even
if the device is compromised [137].

A fundamental concept in TEEs is the Trusted Computing
Base (TCB), which is the set of software and hardware
components that are explicitly trusted to ensure the security
properties expected from a TEE [138], which means the
TCB is the RoT of these platforms. The TCB defines two
environments, TEE and Rich Execution Environment (REE).
The TEE is the execution environment provided by the
TCB, and REE is the execution environment provided by the
untrusted components [123].

There are five security features that TEEs must implement:
isolated execution, secure storage, remote attestation, secure
provisioning, and trusted path [138].

Isolated execution allows applications to run in complete
isolation from other code, which means they have their own
address space and system resources. This can be implemented
in multiple ways, from isolation at the OS, using a hypervisor
or a parallel environment with separated components.

Secure storage provides confidentiality and integrity to the
data, even when the device is powered off. Once again,
depending on the assurance level required, the isolation can be
assured by the OS. However if the OS is compromised, this
isolation is not guaranteed. Therefore, strong constructions of
secure storage use a separate component that ensures access
control independently of the OS. Due to the small amount of
storage available in the RoT, it usually stores cryptographic
keys that are then used to decipher the rest of the data. With
this, as the data is encrypted, it can be stored in an untrusted
storage. Nevertheless, with this kind of solution, it is critical
to prevent the rollback of data to a previous version.

Remote attestation allows the remote verification of the
message origin. At the same time, it attests that the TEE loaded
correctly. This means that remote attestation will only attest if
the TEE’s firmware is correctly loaded. Hence protecting the
device against persistent treats but does not defend against a
run-time compromise or does not inform if the device is not
working properly.

Secure provisioning is the capability of sending data to a
specific TEE, maintaining secrecy and integrity in the com-
munication. This mechanism is normally used to offer secure
updates or change settings in the device, leveraging remote
attestation and cryptographic keys unique to each device.

Finally, trusted path enables secure access to physical pe-
ripherals. For instance, if an application running inside a TEE
requires access to a keyboard for user interaction, it must be
impossible to interfere in the connection between the TEE and
keyboard in any way, including any attempt of eavesdropping
the connection.

Similar to SEs, the GlobalPlatform initiative has a crucial
role in establishing TEE standards. They propose TEE’s archi-
tectures, define APIs to communicate from REE’s applications
with applications running inside the TEE and promote the
development of TEE applications that can run independently

of the underlying TEE implementation [123]. Finally, they also
introduced the concept of Trusted User Interface API. As we
mentioned before, TEE’s applications often require user input,
and that is why trusted paths are included in the architecture
of a TEE. The GlobalPlatform tries to evade this problem by
promoting an input/output peripheral inside the TCB [139].

GlobalPlatform TEE System Architecture specifica-
tion [137] proposes three different architectures: a scheme
with shared memory with the REE and an isolated component
inside the SoC where the TEE operates; an architecture
where all resources are shared with the REE but there is an
isolation level between the two environments; an architecture
where an External Security SoC is introduced in the device
and communicates with the main SoC to provide the TEE
capabilities.

1) Hardware-based TEE enabling technologies:

TEE is a general concept. Thus, there are multiple im-
plementations, each one with its caveats and approaches.
This subsection analyzes two TEE-enabling technologies,
ARM TrustZone [140] and Intel Software Guard Extensions
(SGX) [141], which were chosen due to their availability in
the market and openness to third-party development.

However, it is essential to highlight that at the time
of writing, the version of the Intel SGX detailed here is
deprecated in consumer-grade CPUs. Only server-grade CPUs
will continue to support it [142]. Moreover, there are rumours
of a new version of Intel SGX, but details are scarce, and its
future is uncertain [143].

ARM TrustZone

ARM TrustZone [140] is a set of hardware security exten-
sions in a wide range of Arm processors, from the cheaper and
less capable processors to the expensive ones. This technology
allows an application to run either in a secure state (TEE) or
a non-secure state(REE). The processor executes exclusively
in one of these states at a given time. The underlying system
assures a secure context switch between the two states and
controls access to its resources. This construction does not
have separate hardware for each environment. Nevertheless,
the secure monitor guarantees its separation at the hardware
level.

The secure monitor is a component that manages the context
switch between the two worlds, REE and TEE. Depending
on the processor generation, the secure monitor can be an
independent component inside the processor or implemented
directly on the processor logic [144].

Even though ARM TrustZone is intended as a security
technology, it can also work as a virtualization technology
supported by hardware [144]. This means that each execution
environment may have its OS. This flexibility brings advan-
tages for the developer. Depending on the application, the
developer may create a software library that resides in the
TEE and is called from the REE or use a Secure OS for the
TEE [123]. In these cases, the TEE’s OS is specially designed
for this purpose, having a reduced set of features to keep the
TCB as small as possible. On the other hand, the REE uses a
common OS.

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

Developers typically do not implement applications directly
on ARM TrustZone but instead use a TEE that leverages the
ARM TrustZone, and acts as a development framework for
their application. The GlobalPlatform standards boost this pro-
cess since ARM TrustZone implements multiple GlobalPlat-
form standards, which enable interoperability among different
TEEs [145]. Examples of TEEs used with ARM TrustZone
are the OP-TEE [146], SierraTEE and Open-TEE [147].

Nevertheless, sharing the same hardware components bring
risks. REE applications can try to interfere with TEE applica-
tions. Applications may try interfering with the TEE execution
by creating interrupts to force context switches, creating a
denial-of-service (DoS) or performing side-channel attacks to
the shared CPU cache.

To mitigate DoS attacks, ARM TrustZone allows the con-
figuration of interrupt prioritization to rank first the secure
world’s interrupts. Unfortunately, the developer must activate
this feature specifically [144].

ARM TrustZone CPUs share their cache between applica-
tions from both worlds, which means both compete for the
use of cache. Even though a non-secure world application
cannot access to a cache assigned to a secure-world application
due to a tag bit that signs to which world the cache is
assigned. Regardless, this can yield different attacks, from a
rootkit that evades introspection [148], to multiple side channel
attacks that by monitoring cache activity are able to retrieve
cryptographic secrets from the rich world [149]-[151].

Arm TrustZone secure world has full access to the memory
of the untrusted world. This fact introduced a new class of
attacks called BOOMERANG attacks [152]. These vulnera-
bilities enable an application, from the non-secure world, to
exploit a TEE application to access a portion of memory which
it does not have access.

Finally, ARM TrustZone neither specifies a RoT for their
TEEs not a secure storage method. Therefore, the system
designer is responsible for bringing a solution to these
problems. This difficult the development of solutions based
of TrustZone applications. At the same, it may produce a lack
of authenticity and integrity guarantees in devices that do not
offer separate hardware modules for these functions [144],
[153].

Intel Software Guard Extensions

Intel SGX is a set of Intel CPU instructions that provide
integrity and confidentiality to computation, even when an
attacker compromises privileged software such as the kernel
or the hypervisor [141]. The base of Intel SGX is a trusted
container, also called an enclave, that is protected by trusted
hardware, and its integrity can be attested remotely. The
enclave will only install applications signed by a trusted
party, which is currently Intel. Each enclave can have multiple
applications, and a CPU may have multiple enclaves.

The enclave data and code are stored in the Processor
Reserved Memory (PRM), a subset of DRAM restricted to
enclaves. Inside the PRM, there is an Enclave Page Cache
(EPC), which is divided into multiple pages. Each page can
be assigned to a single enclave. An enclave has multiple EPC
pages and cannot read pages assigned to others. A page can

have multiple types, from ones mapped to the enclave address
space to metadata used in its lifecycle [141].

If an EPC needs to be stored in an untrusted memory,
SGX will cipher and sign it, to assure its confidentiality and
integrity. The only time an untrusted application can write to
the PRM is during the loading stage of an application to the
enclave, when the application is copied and EPC pages are
allocated. This process is cryptographically hashed and then
used for software attestation.

The enclave’s virtual memory is not the only memory that
lives inside the EPCs. The enclave has the option to have
memory mapped from the outside in its virtual memory.
This allows enclaves to use existent libraries from the non-
secure world or act as a library for processes outside the
enclave. In these cases, non-enclave software cannot access
PRM memory [141].

In any context switching from an enclave to an application
outside the enclave, the CPU, to avoid data leakage, saves
its state to a predefined area and cleans its registers before
transferring execution.

Intel SGX enclaves run at the lowest privilege level possible
(user mode). Therefore, enclave application development is
similar to non-enclave applications. The developer has a set of
libraries that can use and a Software Development Kit (SDK)
to compile and deploy the application [154]. Nevertheless,
multiple SDKs work on the Intel-provided SDK to facilitate
the development of secure SGX applications [155], [156].

The security restrictions applied to SGX enclaves are the
same as non-enclave applications. Enclaves will not be able
to interact directly with computer devices [141]. Regardless,
having software that no one can access is also a security prob-
lem. Current anti-virus scan executables, files, and memory
looking for patterns that indicate malicious activity. Therefore,
SGX technology can evade these analyses, which means if a
malicious actor lives inside an enclave, he will not be detected.

In terms of physical security, even though the SGX threat
model excludes physical attacks targeting the CPU chip and
side-channel attacks, it considers attacks to the DRAM, its
bus, and debugging ports [157].

Attacks on CPU chips are complex and require expensive
equipment. Therefore they are less common. The intrinsic
characteristics of SGX are not publicly known. However,
researchers have analyzed patents related to the Intel SGX
and concluded that some countermeasures exist to increase the
difficulty of attacks against the CPU chip [141]. For instance,
is possible that existent keys are hardcoded with fuses in the
CPU circuit, or PUFs are used to generate them.

Intel SGX is affected by multiple side-channel attacks,
some of which are specific to Intel processors. Enabling
these attacks, we have two processor features, hyper-threading,
and speculative execution, that try to optimize the processor
execution.

Hyper-threading divides physical cores into multiple log-
ical cores, which share resources like cache and execution
units [158]. Speculative execution is an optimization technique
for optimizing an instruction pipeline.

Multiple steps must be run sequentially to execute instruc-
tions in a CPU, each taking one clock cycle. The processor im-

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

proves the performance of these steps by doing them in parallel
for different instructions since they are executed in different
parts of the CPU. If a branch instruction is encountered, the
processor will only know the next instruction after executing it,
which would cause a performance hit, by stalling the pipeline.
With speculative execution, the processor will choose one of
the execution flows and start loading its instructions into the
pipeline. After executing the branch instruction, the processor
will discard or use the loaded instructions, according to the
branch result [159].

These optimizations were leveraged with architecture prob-
lems to create multiple attacks against SGX. Branch prediction
attacks exploit information leaks in the component responsible
for predicting the execution flow before a branch instruction.
Lee et al. [159] was the first to introduce this attack, and other
authors [155] used their research to extract a private key that
was stored inside an enclave.

Also, related to the speculative execution, in 2018, two
vulnerabilities were discovered affecting applications outside
the enclave, Spectre [160] and Meltdown [161]. In addition to
the speculative execution, these vulnerabilities exploited out-
of-order execution to execute unintended instructions. Initially,
the vulnerabilities were not able to affect SGX enclaves, but
with further research and adaptation, researchers attacked SGX
enclaves with the same principles [162], [163].

Finally, in 2019, Microarchitectural Data Sampling(MDS)
was introduced, a new class of attacks enabling the bypass of
common security boundaries like processes, virtual machines,
and enclaves by exploiting flaws in undocumented buffers to
leak information [164]-[166].

Fortunately, the vulnerabilities presented here can be fixed
through a microcode update to the processor [156].

SGX sets a RoT that ensures the confidentiality and integrity
of the TEE. Only enclaves properly signed can be installed. At
the same time, SGX provides attestation capabilities. Regard-
less, these two features are not supported by hardware. Each
SGX-enabled CPU has a privileged enclave, called Quoting
Enclave, installed by Intel that is responsible for measuring
the data and code loaded to each enclave and offers remote
attestation capabilities. The measurements provided by the
Quoting Enclave are very similar to the ones provided by
TPMs. Despite that, the signature algorithms are different and
are not implemented in tamper-resistant hardware [167].

2) Security attacks and countermeasures:

As we stated before, generally, TEEs share their hardware
resources with the rest of the computation environment, which
brings security risks. In this subsection, we will analyze
these consequences, that affect both TEEs implementations
presented before.

First of all, TEEs do not protect against software vulner-
abilities, which means if the TEE or SDK implementation
has a security flaw, this will impact the security of this
TEE. Since the introduction of TEE’s, both technologies have
been affected by software vulnerabilities. Bulck et al. [168]
discovered multiple vulnerabilities affecting Intel SGX SDKs.
Regarding Arm TrustZone TEE’s, researchers have discovered
several software vulnerabilities [144]. When writing this ar-
ticle, the NIST vulnerability database had 73 vulnerabilities

related to Arm TrustZone [169]. This amount of vulnerabil-
ities is a consequence of the level of knowledge required
to develop a TEE. As we stated before, Arm TrustZone is
a bare-metal technology that developers use to create their
TEE implementations, which means many of the features are
implemented by the developer. Therefore, most vulnerabilities
compromise TEE’s implementations and not the Arm Trust-
Zone directly [170].

On the hardware side of the TEE, side-channel attacks
are the main class of attacks affecting TEEs. Among them,
cache-based attacks appear as a specific attack against TEEs.
Side-channel attacks on the processor cache are made by a
malicious application running in the untrusted world, sharing
the same processor core with the TEE application. This
malicious application fills the processor cache with its data and
waits for the TEE application to run and evict its data from
the cache. Afterward, the malicious application will access
the same data and measure the time it takes to access the
information. As access to information stored in the CPU’s
cache is faster than RAM, the application can figure out
accesses patterns of the TEE, and with that and knowledge
about the TEE’s code, it can extrapolate information about
the TEE’s execution [156]. Using these principles, multiples
attacks were developed, jeopardizing both Intel SGX and Arm
TrustZone [149]-[151], [171], [172].

Despite that, TEEs are also vulnerable to other types of side-
channel and physical attacks. The literature states that Intel
SGX and Arm TrustZone do not have protection against EM,
power analysis attacks, or fault injections [141], [144]. For
both technologies, we found research performing in practice
these attacks. Bukasa et al. [173] analyzed EM attacks against
Arm TrustZone, and Chen et al. [174] performed a voltage
glitch attack on an Intel SGX enclave. Both researchers were
able to recover cryptographic keys from a TEE.

Intel SGX threat model excludes physical threats to the
device security due to the inherent cost of hardening a general-
purpose CPU. Despite that, the threat model includes threats
against the bus connecting the Random Access Memory
(RAM) to the CPU due to the likelihood of eavesdropping
attacks. Therefore, any data that SGX needs to store in RAM
is properly ciphered and signed. Regardless, information inside
the internal CPU buses is transmitted in clear [141], [175].

Therefore, in essence, TEEs offer interesting security fea-
tures to increase resilience against software attacks. Even
so, TEEs do not have protection against the majority of the
physical attacks, and, if compromised, they can be used as a
persistence method for attackers [138].

3) Advantages and disadvantages for identity assurance:

The significant advantage of TEE for identity assurance
is the fact that it allows the creation of a secure execution
environment without additional hardware. Therefore, less cost
and power consumption. Nevertheless, as we saw earlier, Arm
TrustZone requires further adaptation to assure RoT, which
may include additional hardware.

TEEs can offer a greater performance when compared with
solutions such as SEs [176], in terms of CPU, RAM, and
storage capabilities. For instance, Arm TrustZone enabled

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

CPUs can offer RAM in the gigabyte range , in comparison,
SEs have RAM in the kilobyte range.

Similar to other technologies, developers need to dominate
a new software stack to develop solutions using TEEs.

Finally, it is imperative that developers precisely understand
this technology’s limitations, as it does not defend against
every physical attack and introduces new risks due to the
sharing of components with the non-secure world.

4) Implementations:

TEE solutions have been mainly used to store cryptographic
keys, provide remote attestation, identity, and ensure the
security and resilience of the application even if the device is
compromised. Most of the solutions are based on public key
cryptography, in which each device has a private key used to
identify the device.

There are multiple solutions following these principles. For
instance, Ling et al. [177] developed a system that provides
secure boot and remote attestation for IoT devices, leveraging
Arm TrustZone. This research uses ROM and eFuses, to
overcome the secure storage limitation of the Arm TrustZone
and ensure the security of a RoT.

Another example is from Lesjak et al. [176], which im-
plemented two authentication systems, one using an Arm
TrustZone enabled CPU and the other with a SE, to analyze
the advantages and disadvantages of each construction. Finally,
they propose a hybrid system that combines Arm TrustZone
and SE to overcome the security risks of the Arm TrustZone.

Wang et al. [178] implemented a similar solution with
Intel SGX to create a lighter solution for remote attestation
compared with TPMs, with the added befit of offering a secure
environment to run applications.

Durand et al. [179] developed a lightweight communication
system backed up by hardware. However, since Intel SGX
CPUs are too expensive for most IoT devices, they used a
secure element in the device and an Intel SGX enclave in the
server to receive the device communications securely.

More recent researchers are trying to integrate device iden-
tity, based on TEEs, with blockchain technology [180], [181].

F PUFs

PUFs are physical systems that, given a specific input (a
challenge), produce a string of bits, the response [182]. The
response is unique and unpredictable because it depends on
the unique hardware characteristics of each device that are a
consequence of the physical world variations during the man-
ufacturing process [183]. The challenge and the corresponding
response are called a Challenge- Response-Pair (CRP) [184].
Depending on the type of PUF, it can be configurable or not,
which means that any change in the challenge will induce a
change in the response [16].

The concept of PUF is generic to include systems from
different application fields. Regardless, there are still construc-
tions that are not called PUF because they were designed
outside the field of hardware security engineering [16].

Many authors consider PUFs as one of the technologies that
can help IoT overcome the device identity challenges [185]-
[187] due to the promise of a cheaper and safer way to gen-

erate and store cryptographic keys compared with EEPROM
solutions that offer the same assurance level [188].

PUF’s constructions are evaluated according to two metrics,
intra-distance and inter-distance. Intra-distance is the hamming
distance between two responses from the same PUF instance
using the same challenge. Inter-distance is the hamming dis-
tance between two responses from different PUF instances
when the same challenge is applied [16]. On top of these
metrics, researchers can also analyze the PUF’s reproducibility
and uniqueness.

The distribution of the response intra-distance gives us the
PUF reproducibility. PUFs are not mathematical functions be-
cause a single input (challenge) can generate multiple outputs
due to physical environment changes and random noise in
the response generation [189]. Therefore, reproducibility is an
essential characteristic of a PUF-based system. Furthermore,
PUF solutions employ fuzzy extractors to handle these varia-
tions and return a stable response [189].

The distribution of the response inter-distance analyzes the
uniqueness of a PUF. When challenged with the same input,
different PUFs should produce distinct responses. The re-
sponses’ inter-distance should ideally be 50% to be considered
a true random generator [188].

A PUF that is reproducible and unique is also identifiable.
This means that using a PUF response to identifying a device
is feasible because its response is unique and stable [16].

In addition to these characteristics, another set of features
defines PUFs, namely being tamper-resistant, unclonable and
unpredictable.

Tamper-resistance is the capability of resisting attempts of
unauthorized physical modifications to leak information or
bypass some security protection. Because PUF constructions
rely on measurements of physical features, any slight variation
provokes a change in its response. Therefore any attempt to
tampering a PUF would cause a noticeable change in its CRPs,
ultimately originating a new PUF instance [16].

PUFs are also unclonable because of these precise measure-
ments. In any cloning attempt, the attacker would not be able
to reproduce all the PUF characteristics since they result from
physical variations during the manufacturing process [16].

Another characteristic that differentiates PUFs, from a se-
curity standpoint, is their predictability. Based on this charac-
teristic, there are two types of PUFs, Weak and Strong PUFs.
This property depends on the resilience of a system against
an attacker that tries to predict all CRPs [190], [191]. Strong
PUFs are the ones that, even when exposed for an extended
period to an attacker, it is impossible to predict their responses
to a challenge. All the other constructions that do not meet this
requirement are considered Weak PUFs [16].

Strong PUFs have a large set of CRP, which prevents
the creation of a database with all possible pairs. Even if
attackers know a large subset of CRPs, they cannot predict
unknown ones. Moreover, if the attacker physically possesses
the PUF, the Strong PUF security is not compromised [188],
[192]. By contrast, Weak PUFs may have a single CRP. Thus,
the security system is compromised if an attacker obtains its
response [188], [193]. Moreover, most Weak PUFs have a
single CRP, allowing cloning of the device [192].

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

Strong PUFs offer higher security guarantees than Weak
PUFs. However, some Strong PUF constructions have become
vulnerable to modeling attacks, due to the emergence of new
technologies. These attacks require a considerable amount of
CRPs to model the PUF response. Researchers have known
about these attacks since the beginning of this research field.
Nevertheless, with the advancement of machine learning tech-
niques, Strong PUF constructions that were known as secure,
are now considered vulnerable to these attacks [194]-[198].

These attacks have been the focus of recent research. This
leads some authors to suggest that Strong PUFs are still an
open research challenge and require further development to
meet the expected security features that are being jeopardize
by these attacks [16], [199], [200].

1) Security attacks and countermeasures:

PUFs promise a security improvement in the storage of
cryptographic keys since it eliminates potential offline attacks
when the information is not being used. PUFs do not have
countermeasures against physical attacks, given that any at-
tempt to inject a fault or tamper with the device would induce
changes in the PUF’s response. Despite that, depending on
the construction, PUFs may be vulnerable to side-channel
attacks or reverse engineering with the objective of modeling
the PUF’s response [201]. For instance, Different Delay-based
PUFs, such as the Arbiter PUF, which explore delays between
two competing signal paths, can be vulnerable to power-side
channel analysis [201] and optical side-channel attacks [202],
and RO PUFs are vulnerable to electromagnetic side-channel
attacks [203].

It is argued that PUFs resist to reverse engineering attempts
due to their complexity [16]. Still, Nedospasov et al. [204]
attacked SRAM PUFs with SEM, a reverse engineering tech-
nique, as a way to model its responses. SRAM PUFs exploit
that after a power-on/power-off cycle, a memory cell has
the same probability of being set as a 0 or 1. At the same
time, each cell tends to keep the same behavior over power
cycles [205]. As the state of each cell can be observed
with SEM, its CRPs may be retrieved. SRAM PUFs have
the advantage of being a low-cost solution and simple to
implement [206]. On the other hand, these advantages also
ease the attacker’s work, given that it decreases the PUF’s
complexity.

Even though we listed several attacks against common
PUFs, these can be overcome by an improved design or coun-
termeasures. For instance, Nedospasov et al. [204] propose
that new SRAM PUF constructions have an asynchronous reset
mechanism of its memory cells to decrease the information ex-
posure, and Merli et al. [203] suggest multiple changes in the
RO PUF design to decrease the emanation of electromagnetic
radiations.

In summary, while the inherited dependency on physical
characteristics protects PUFs against tampering attempts, it
does not protect against side-channel attacks. Therefore, side-
channel attacks must be mitigated with additional countermea-
sures.

2) Advantages and disadvantages for identity assurance:

In general, PUFs are considered a possible solution for
IoT key management due to being a cheaper solution when

compared with other methods to store cryptographic keys like
antitampering EEPROM, at the same time, it requires less
circuit space and energy to operate [188].

Moreover, Strong PUFs, when are able to resist to mod-
eling attacks, provide lightweight authentication and identifi-
cation protocols that not rely on heavy cryptographic algo-
rithms [207].

PUFs promise a way to securely manage device identity,
protected against invasive attacks like key extraction or any
attempt of tampering. However, as we saw earlier, both Secure
and Weak PUFs have potential vulnerabilities, as we stated
before. Thus, the system using this technology should beware
of these risks and accept them.

In addition, most systems based on Strong PUFs assume the
server, where the CRPs are stored, is secure [208]. However,
for some use cases, this risk is unacceptable. If the server
is compromised, the confidentiality of all CRPs pairs is
jeopardized, which means the attacker can authenticate itself
as any device.

3) Implementations:

In the field of identity assurance, we can see the use of PUFs
in two fields, generation of secure keys and authentication.
Namely, Strong PUFs are used for authentication and Weak
PUFs for key generation [188].

For authentication, the typical protocol has the following
construction, after a PUF is manufactured, it is submitted to
multiple Challenges in a secure environment to ensure CRP
confidentiality. Known CRPs are then securely stored and used
for device authentication. Each challenge is only used once,
to mitigate replay attacks [200], [209].

This type of authentication protocol has been used since
the rise of this technology. Early examples are Gasend et al.’
Silicon PUF [210] and Lim et al.’” Arbiter-Based PUF [211].
However, the threat model of these early implementations
was too strict, and because of that, they were vulnerable to
modeling attacks [212].

To hamper modeling attacks, the next iteration of PUF
constructions started using one-way functions applied to the
PUF response to prevent direct access to the PUF CRP [209],
[213]-[215]. This type of PUF is generally known as Control
PUF. Once again, further research discovered vulnerabilities in
this type of construction due to reversible one-way functions
and pattern matching [195], [216].

Current research is working on improving existent construc-
tions, making them resilient to modeling attacks. The main
approach is to close the PUF interface by implementing mutual
authentication [217]-[220].

There is also research trying to prevent modeling attacks,
at the same time, it improves the authentication protocol.

Chatterjee et al. [221] and Qureshi et al. [208] developed
solutions that don’t assume a secure CRP database, which
means that even if the server responsible for the authentication
is compromised, the CRPs are not because they are not stored
in clear text.

Ebrahimabadi et al. [222] go further to mitigate the eaves-
dropping of CRPs and modeling attacks. They created an
authentication protocol that scrambles and divides the com-
munications between the server and a node (the device with

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

a PUF that needs to be authenticated) into multiple packets.
These packets are sent through multiple nodes to obscure the
actual destination of the message. With that, the authors expect
that attackers cannot relate the CRPs with a specific device,
so it will be impossible to perform a modeling attack.

Hang et al. [223] use the classic authentication protocol
with Strong PUFs. However, they combine multiple PUFs on
the same device to create a fingerprint that changes if any of
the device’s components is tampered. This construction uses
a Configurable RO PUF as a hardware security primitive and
a latch structure to extend the key space of the responses,
increasing its resilience. This solution uses the same style of
authentication protocol, where we have a server that stores
multiple CRPs and then queries them.

On the other hand, Weak PUFs used in [oT systems do not
try to replace traditional authentication systems. But instead,
they attempt to improve the storage of cryptographic keys on
a cheap IoT device. A Weak PUF generates the same secret
key every time the device is running. Therefore, this key does
not need to be stored, which mitigates the risk of an attacker
extracting the key when the device is not running.

For this generation process to be reliable, the secret key
extraction from a Weak PUF response requires an extra step,
a helper data algorithm '. Any change on the cryptographic
key is not acceptable for most encryption protocols. Thus, this
algorithm allows the extraction of a secret key from a noisy
or not uniform response [224], [225].

The generation process of a secret key from a Weak PUF
normally has two phases, the enrollment and the reconstruc-
tion. The enrollment happens when we want to create a new
secret key, and the reconstruction is when we need to obtain
the same secret key after its creation.

During the enrollment phase, from a PUF response, it is
generated a secret key and helper data. The key has to be kept
secret, but the helper data does not, and can be stored in non-
secure NVM. The reconstruction phase uses the helper data,
that was obtained before, to generate the same secret key given
a another PUF response from the same PUF [226], [227].

The first practical work using PUFs to securely manage
cryptographic keys was done by Skori¢ et al. [226] and
Suh et al. [228]. Over the years, new research on this topic
emerged. Some of this research used new types of PUFs to
generate secrets [205], [229], and others focused on creating
re-configurable PUFs that enable the change of secret keys
over time [227], [230], [231]. In this type of research, we can
also see the use of Strong PUFs due to the amount of CRPs
that allow the generation of multiple keys on the same PUF
instance [224].

Lastly, researchers have been developing PUF-based sys-
tems capable of generating a shared key among different
resource-constrained devices to enable multiparty communi-
cation [232].

In summary, there are two main approaches to enhance
authentication and identity on IoT devices using PUFs,
lightweight authentication protocols using CRP databases and
secret key generation. Authentication protocols with CRP

YA fuzzy extractor is a specific type of helper data algorithm [224].

20

databases depend on the resilience of the PUF against se-
curity attacks. Nevertheless, when correctly employed, this
technology answers the needs of constrained IoT devices when
an energy-efficient way to authenticate a device is necessary
without requiring intensive computation. On the other hand,
PUF-based key generation works a security primitive for
existent identity and authentication systems. Therefore, it does
not solve the need for heavy computation, but it offers a cheap
and secure way to generate and store unique secret keys.

VI. DISCUSSION

The different hardware technologies presented in this re-
search can be used to help the development of IoT identity
systems. However, they are very different in the way they can
support them. Furthermore, regardless of its usefulness for
identity systems, the designer needs to analyze its strengths
and weaknesses to decide which technology should be in-
cluded in a device.

The main concerns during this assessment are how the tech-
nologies can benefit the system and contribute to overcoming
the IoT identity challenges, the advantages and disadvantages
of each technology and, finally, what security countermeasures
they have. In this section, we will analyze and compare the
technologies presented earlier. We will focus on these points
to assist any system developer who wants to create a system
with an identity based on hardware primitives.

In Section III, we list three challenges to developing an
identity system: lightweight encryption, object identification,
and secure storage. The technologies analyzed can be used to
overcome these challenges or at least circumvent them.

Each encryption accelerator, SEs and TEEs can provide
ways to get around the need for lightweight encryption al-
gorithms. All these technologies can run cryptographic algo-
rithms optimally, making these operations faster and more
energy efficient. Among these technologies, it is essential
to highlight the cryptographic instruction sets (a subtype of
the cryptographic accelerator), as they have the potential to
normalize the implementation of cryptographic algorithms in
hardware. Strong PUFs and TRNGs, not so directly, also con-
tribute to the research challenge in lightweight cryptography.
TRNGs do not provide a way to run cryptographic algorithms
optimally. Instead, they provide a way to get high entropy
numbers, which is essential for any asymmetric encryption
scheme. PUFs can be exploited for lightweight authentication
systems, easing the need for cryptographic algorithms.

Regarding object identification, Intel SGX and SEs offer an
isolated execution environment and secure storage capabili-
ties that can be exploited to create object identification sys-
tems. Another technology with similar possibilities is TPMs.
However, the developer is limited to the features offered
by the TPM specification. Taking a different approach, we
have strong PUFs, which have CRPs entirely dependent on
the device’s hardware characteristics, which can be used to
uniquely identify a device. Also, strong PUFs self-destruct on
any tampering attempt.

Finally, masked ROM and OTP memories provide read-
only memories that can store RoTs. Regardless, they do not

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

21

Technologies Lightweight Cryptography | Object Identification | Secure Storage
TRNG °
Masked ROM °
Masked ROM and OTP memories |1ioaung gate OTP *
Fuse OTP °
Antifuse OTP °
Crypto Instruction Sets .
Crypto accelerators Crypto Coprocessors .
Crypto Processor ° ° °
Secure element . . °
Intel SGX ° ° °
TEE Arm TrustZone °
PUF ° .

TABLE III
TECHNOLOGIES AND RESEARCH CHALLENGES

protect data at rest, which other technologies like Intel SGX
and SEs do. TPMs and PUFs can also ease the challenge of
secure storage. However, they offer a limited set of features.
TPMs can only store cryptographic keys, and weak PUFs are
even more limited and cannot import cryptographic keys that
are generated outside of PUF. Table III summarizes all this
information.

Each of the technologies that may support the device’s
identity will relate to identity assets and, as a consequence,
are critical to achieve any security goal (Subsection IV-B). For
instance, we have stated that masked ROM and OTP memories
do not provide countermeasures to protect data at rest. This
means that identity data and firmware have their confidentiality
at risk, given that an attacker can read the stored information
when the device is turned off [69], [98], [100]. The other four
technologies featuring secure storage (TPM, SE, Intel SGX,
and PUF) have countermeasures to protect data at rest and
some even during its execution.

Intel SGX ciphers the information every time it needs to
leave the CPU package, but besides that, it does not have
any further security countermeasure to prevent physical attacks
against confidentiality and integrity of the identity data and
firmware, which means it is vulnerable to fault injection
attacks [233] and side-channel attacks.

By contrast, TPMs and SEs have several countermeasures
to prevent fault-injections and side-channel attacks. SEs are
known to have the most complete set of security features, and
TPMs benefit from this fact since their design is many times
based on SE’s design but with some compromises considering
that the security assurances of a TPM are not as demanding
as the ones of a SE [234].

PUFs distinguish themselves from other technologies in
terms of security, considering they do not have physical secu-
rity countermeasures. The risk of fault injections is neglectable
because any attempt would alter the PUF’s response, making
it unusable. However, side-channel attacks and reverse engi-
neering attempts would not affect its response. Researchers
consider that PUFs are too complex to be vulnerable to these
attacks, which in many cases is true, but it can also be a
careless assumption for some constructions [204].

Looking at the remaining technologies, ARM TrustZone,
crypto accelerators, and TRNGs do not have any security

countermeasures by default. In any case, it is important to
mention that with the exception of ARM TrustZone, these
components are base building blocks, which means the device
designer is responsible for installing of physical security
countermeasures.

Despite the security countermeasures, physical security is
not perfect, mainly against reverse engineering attempts. If
the attacker spends enough time, he will be able to bypass the
implemented countermeasures. The majority of these counter-
measures do not eliminate risks but rather increase the attack
complexity and time to succeed.

Table V summarizes the different countermeasures that are
commonly available in the presented technologies.

Each of the technologies that may support the device’s
identity will report to identifying assets and, as a consequence,
are critical to achieving any security goal (Subsection IV-B).
For instance, we have stated that masked ROM and OTP
memories do not provide countermeasures to protect data at
rest. This meaManyns that identity data and firmware have
their confidentiality at risk, given that an attacker can read the
stored information when the device is turned off [69], [98],
[100]. The other four technologies featuring secure storage
(TPM, SE, Intel SGX, and PUF) have countermeasures to
protect data at rest and some even during its execution.

Intel SGX ciphers the information every time it needs to
leave the CPU package, but besides that, it does not have any
further security countermeasures to prevent physical attacks
against the confidentiality and integrity of the identity data
and firmware, which means it is vulnerable to fault injection
attacks [233] and side-channel attacks.

By contrast, TPMs and SEs have several countermeasures
to prevent fault injections and side-channel attacks. SEs are
known to have the most complete set of security features, and
TPMs benefit from this fact since their design is many times
based on SE’s design but with some compromises considering
that the security assurances of a TPM are not as demanding
as the ones of a SE [234].

PUFs distinguish themselves from other technologies in
terms of security, considering they do not have physical secu-
rity countermeasures. The risk of fault injections is neglectable
because any attempt would alter the PUF’s response, making
it unusable. However, side-channel attacks and reverse engi-

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

22

Masked ROM Crypto accelerators
Attack \ Technology TRNG OTP memories Crzgto Instruction Sets | Crypto Coprocessors | Crypto Processor Smart cards | TEE | PUF
Voltage sensors No N/A No No Yes* Yes No No
Multiple voltage sensors No N/A No No No Yes No No
Clock signal sensor No N/A No No Yes* Yes No No
Active metal shield No No No No Yes* Yes No No
EM radiation sensor No N/A No No No Yes No No
Voltage monitoring No N/A No No No Yes No No
Defensive PCB design No No No No Yes* Yes No Yes

N/A = Not applicable;
* = Depends on the model

TABLE IV
COMMON COUNTERMEASURES OF EACH TECHNOLOGY

neering attempts would not affect its response. Researchers
consider that PUFs are too complex to be vulnerable to these
attacks, which in many cases is true, but it can also be a
careless assumption for some constructions [204].

Looking at the remaining technologies, ARM TrustZone,
crypto accelerators, and TRNGs do not have any security
countermeasures by default. In any case, it is important to
mention that except for ARM TrustZone, these components
are base building blocks, which means the device designer is
responsible for installing physical security countermeasures.

Despite the security countermeasures, physical security is
not perfect, especially against reverse engineering attempts.
If the attacker spends enough time, he can bypass the im-
plemented countermeasures. Many countermeasures do not
eliminate risks but rather increase the attack’s complexity and
time to succeed.

Table V summarizes the different countermeasures that are
commonly available in the presented technologies.

Finally, we can examine each technology’s features and
advantages, and disadvantages. To start, TRNGs offer a high-
quality entropy source with the cost of adding dedicated
hardware to the device, which increases the device’s power
consumption. Moreover, due to the physical exposure of
devices to attackers, TRNGs may be vulnerable to environment
bias.

There are four types of ROMs, masked ROM, floating-gate
OTP, eFuse OTP, and anti-fuse OTP. These memories can
be programmed a single time, after manufacturing, except
for masked ROM, which can only be programmed during
manufacturing since it stores the information hardwired in
its design. Despite this, floating-gate OTPs and eFuse OTPs
have some disadvantages. Floating-gate OTPs are vulnerable
to optical attacks and resetting the memory, and eFuse OTPs
have a limited duration of data retention.

As stated before, Crypto accelerators offer optimized cryp-
tographic operations through specialized hardware. Therefore,
except for cryptographic instruction sets, every type of crypto
accelerator is an additional component that needs to be added
to the device and properly integrated. Crypto-processors and
TPMs typically offer libraries to facilitate their integration with
the rest of the system. By contrast, crypto-coprocessors are
integrated at the CPU level.

In addition to providing optimized cryptographic operations
and secure storage, SEs offer a secure execution environment
independent of the primary system. SEs have a high assurance

level but limited computation power and storage.

TEEs also provide an execution environment. However, their
security assumptions are different. Usually, these environments
share their hardware with the rest of the system, which
introduces advantages and disadvantages. TEEs are a feature
of the main CPU, which means it does not require dedicated
hardware. Regardless, this fact also increases their security
risks.

Moreover, each of the TEEs presented has its own positive
and negative points. Intel SGX enabled processors provide a
RoT and secure storage but are more expensive than Arm
Trust-Zone enabled processors, which are cheaper but do not
provide secure storage or RoT. On top of that, Arm Trust-Zone
enabled CPUs work at the system level, allowing developers
to run an operating system for each execution environment,
increasing the system flexibility and development complexity.
In contrast, Intel SGX trusted environments are developed
on top of SDKs that abstract the complexity of low-level
operations.

Finally, PUFs provide a way to generate and store keys
tiddly dependent on the device’s characteristics. Additionally,
Strong PUFs have the benefit of enabling lightweight cryp-
tography authentication algorithms. However, independently
of the PUF type, there are disadvantages. In their majority,
PUFs depend on dedicated hardware, which requires low-level
integration with the system. Moreover, with the exception of
some commercial off-the-shelf products, the majority of the
time, system designers need to build their own PUFs on the
board, which increases the burden of using this technology.

Table VI summarizes the different advantages and disad-
vantages of the technologies presented.

VII. LIMITATIONS AND FUTURE DIRECTIONS

During this research, we examine many technologies that
can be used to support identity and authentication operations in
IoT. As we have seen, most of them have working prototypes
of identity and authentication systems, and some have already
been deployed in production. Regardless, we do not see
widespread use of these technologies in IoT devices.

Over the years, the cost of adding specialized hardware has
been cited as the reason for the lack of adoption of these
solutions. However, as other researchers have pointed out [17],
this is a misconception. Our analysis confirms that there are
solutions in different price ranges, even for smaller budgets.
Therefore, it is necessary to consider other reasons for the low
adoption of these technologies.

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 23
Masked ROM Crypto accelerators
Attack \ Technology TRNG OTP memories Crzgto Instruction Sets | Crypto Coprocessors | Crypto Processor Smart cards | TEE | PUF
Voltage sensors No N/A No No Yes* Yes No No
Multiple voltage sensors No N/A No No No Yes No No
Clock signal sensor No N/A No No Yes* Yes No No
Active metal shield No No No No Yes* Yes No No
EM radiation sensor No N/A No No No Yes No No
Voltage monitoring No N/A No No No Yes No No
Defensive PCB design No No No No Yes* Yes No Yes
N/A = Not applicable;
* = Depends on the model
TABLE V
COMMON COUNTERMEASURES OF EACH TECHNOLOGY
Technologies Features Advantages and disadvantages
- Increased power consumption
TRNG High quality entropy source - Risk of environment bias
- Dedicated hardware
Masked ROM Read-only memory + Hardwired data

- Programmed during manufacturing

Masked ROM and OTP memories

Floating-gate OTP

Read-only memory

+ Programmable after manufacturing
- Susceptible to UV attacks

eFuse OTP

Read-only memory

+ Programmable after manufacturing
- Limited data retention

Anti-fuse OTP

Read-only memory

+ Programmable after manufacturing

Cryptographic Instruction Sets

Optimized cryptographic operations

+ No additional hardware
+ Easy integration

Crypto accelerators

Crypto-coprocessors

Optimized cryptographic operations

- Complex integration
- Dedicated hardware

Crypto-processor

Optimized cryptographic operations

+ Easy integration
- Dedicated hardware

Optimized cryptographic operations

+ Easy integration

TPM Secure storage and RoT - Dedicated hardware
Optimized cryptographic operations + High assurance security level
Smart cards Secure execution environment - Dedicated hardware
Secure storage and RoT - Limited computation power
Optimized cryptographic operations + No additional hardware
Intel SGX Secure storage and RoT - Deprecated in Intel Core processors
TEE . . ; .
Trusted execution environment - Expensive TEE option
+ No additional hardware
. . . + Cheap TEE option
Arm TrustZone 'l(?p timized cry P tograpk_uc operations + Flexibility
rusted execution environment .
- Secure storage or RoT nonexistent
- Development complexity
PUF Generation of keys tidly dependent on device’s characteristics | - Complex integration

Lightweight cryptography authentication algorithm

- Dedicated hardware

TABLE VI
SUMMARY OF ADVANTAGES AND DISADVANTAGES OF EACH TECHNOLOGY

The disregard for security can be one of the reasons for the
lack of adoption of hardware-based solutions. However, some
devices implement adequate software-level protection but do
not employ hardware RoTs. Therefore, in these cases, your
threat model accepts that the risk of physical attacks or the
cost of hardware solutions is not worth it when compared to
the value of the information in question.

Each technology has its library or software stack to interact
with it. These are low-level APIs, so if we want to use them to
support an identity mechanism, we need to build our solution
using these libraries.

Device designers often do not design a device from scratch,
but instead, use an existing SoC as a foundation for adding
their features. These SoCs include SDKs to make software
development easier, which means that if there is no support
for this kind of technology in existing SDKs, it will discourage
most software designers from devices. Furthermore, even
though the SDK supports the technology in question, it also
needs to provide an authentication and identity framework that
uses these technologies and hides the complexity of a hardware

RoT. If that does not exist, designers will prefer traditional
systems over implementing their custom ones with hardware
security, which requires experienced staff and is error-prone.

Therefore, if the promotion of hardware security depends
on the adoption of these mechanisms by SDKs, the lack of
standardization in IoT also affects this challenge. Assume
there is no standard hardware-based identity and authenti-
cation framework. In this case, each vendor will implement
a framework, increasing development diversity and effort, as
the developer’s knowledge of a framework does not apply to
frameworks from other vendors.

Finally, the limitations of some technologies may be the
lack of ready-to-use components. For example, in the case of
PUFs, from the market analysis, we did at the time of writing,
few off-the-shelf components include or provide a PUF. This
technology is not new and holds many promises for IoT.
However, without the availability of off-the-shelf components,
device designers are forced to implement PUFs from scratch,
which is a barrier to their proliferation.

So the cost of hardware security is not necessarily the addi-
tional hardware added to the device, but the cost of integrating

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

with the rest of the device. To combat this trend, develop-
ment SDKs should include hardware-based authentication and
identity frameworks to facilitate the integration of hardware
RoTs into new systems. In addition, the standardization of
these frameworks should be a priority so as not to create
diversity between the manufacturers’ frameworks and increase
the learning curve for the use of these technologies.

VIII. CONCLUSION

IoT devices interact with our personal life and manage
critical infrastructures. Thus, keeping them secure is a priority.

Identity and authentication play a vital role in the security
of these devices. Without it, it is impossible to guarantee
the device’s security since we would be unable to assure
the veracity of any information. Nevertheless, identity and
authentication are considered open research challenges in IoT.
Resource-constrained devices, a lack of standardization and
exposure to physical attacks are only some of the reasons that
make identity and authentication in IoT so challenging.

Over the years, multiple researchers have advocated us-
ing hardware to undermine these challenges. Regardless,
widespread adoption of hardware technologies supporting
identity and authentication has not been seen.

During our work, we focused on hardware trust anchors
and their security features that can be exploited to develop
new identity and authentication systems.

We analyzed physical risks for IoT identity and identified
possible countermeasures. We retrieved that hardware trust
anchors must employ protections, like multiple sensors, active
metal shields and a defensive PCB design, to protect them-
selves against physical risks. Besides that, we also explored
how challenging these risks are since we cannot mitigate them
completely but rather increase the difficulty of an attack.

With these security features and identity challenges in mind,
we reviewed technologies available to designers to develop
new identity and authentication systems. In this analysis, we
included the following technologies: TRNGs, masked ROMs
and OTP memories, crypto accelerators, secure elements,
TEEs and PUFs.

We concluded that there are multiple candidate technologies
that might support new identity and authentication systems,
aiming at different price points. Indeed, these technologies
can overcome some of the challenges holding back identity
and authentication in IoT by enabling the use of common
cryptographic algorithms in low-power devices and offering
resilience against physical attacks. Unfortunately, the complex
integration process of some of these technologies and the
required knowledge to effectively use them continue to halt
the widespread use of hardware trust anchors in IoT.

REFERENCES

[11 A. Nordrum, “(2016). popular internet of things forecast of 50 billion
devices by,” 2020.

[2] D. Hanes, G. Salgueiro, P. Grossetete, R. Barton, and J. Henry, loT
fundamentals: Networking technologies, protocols, and use cases for
the internet of things. Cisco Press, 2017.

[3] D. Wang, D. Chen, B. Song, N. Guizani, X. Yu, and X. Du, “From iot
to 5g i-iot: The next generation iot-based intelligent algorithms and 5g
technologies,” IEEE Communications Magazine, vol. 56, no. 10, pp.
114-120, 2018.

(4]

(5]

(6]
(71

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

24

M. Marjani, F. Nasaruddin, A. Gani, A. Karim, I. A. T. Hashem,
A. Siddiqa, and I. Yaqoob, “Big iot data analytics: Architecture,
opportunities, and open research challenges,” IEEE Access, vol. 5, pp.
5247-5261, 2017.

M. Iorga, L. Feldman, R. Barton, M. J. Martin, N. Goren, and
C. Mahmoudi, “Fog computing conceptual model,” Tech. Rep., mar
2018.

N. Yousefnezhad, A. Malhi, and K. Framling, “Security in product
lifecycle of IoT devices: A survey,” vol. 171, p. 102779, dec 2020.
A. R. H. Hussein, “Internet of things (iot): Research challenges
and future applications,” International Journal of Advanced Computer
Science and Applications, vol. 10, no. 6, pp. 77-82, 2019.

H. U. Rehman, M. Asif, and M. Ahmad, “Future applications and
research challenges of iot,” in 2017 International conference on infor-
mation and communication technologies (ICICT). 1EEE, 2017, pp.
68-74.

S. A. Al-Qaseemi, H. A. Almulhim, M. F. Almulhim, and S. R.
Chaudhry, “ITot architecture challenges and issues: Lack of standardiza-
tion,” in 2016 Future Technologies Conference (FTC). 1EEE, 2016,
pp. 731-738.

M. Nawir, A. Amir, N. Yaakob, and O. B. Lynn, “Internet of things
(iot): Taxonomy of security attacks,” in 2016 3rd International Con-
ference on Electronic Design (ICED). 1EEE, 2016, pp. 321-326.

A. Cirne, P. R. Sousa, J. S. Resende, and L. Antunes, “Iot security
certifications: Challenges and potential approaches,” Computers &
Security, vol. 116, p. 102669, 2022.

Z.-K. Zhang, M. C. Y. Cho, C.-W. Wang, C.-W. Hsu, C.-K. Chen,
and S. Shieh, “Iot security: ongoing challenges and research opportu-
nities,” in 2014 IEEE 7th international conference on service-oriented
computing and applications. 1EEE, 2014, pp. 230-234.

X. Zhu and Y. Badr, “A survey on blockchain-based identity manage-
ment systems for the internet of things,” in 2018 IEEE International
Conference on Internet of Things (iThings) and IEEE Green Computing
and Communications (GreenCom) and IEEE Cyber, Physical and
Social Computing (CPSCom) and IEEE Smart Data (SmartData).
IEEE, jul 2018.

K. Chen, S. Zhang, Z. Li, Y. Zhang, Q. Deng, S. Ray, and Y. Jin,
“Internet-of-things security and vulnerabilities: Taxonomy, challenges,
and practice,” Journal of Hardware and Systems Security, vol. 2, no. 2,
pp. 97-110, 2018.

S. Sidhu, B. J. Mohd, and T. Hayajneh, “Hardware security in iot
devices with emphasis on hardware trojans,” Journal of Sensor and
Actuator Networks, vol. 8, no. 3, p. 42, 2019. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/8761062

M. Roel, “Physically unclonable functions: Constructions, properties
and applications,” Katholieke Universiteit Leuven, Belgium, 2012.

B. Pearson, L. Luo, Y. Zhang, R. Dey, Z. Ling, M. Bassiouni, and
X. Fu, “On misconception of hardware and cost in iot security and
privacy,” in ICC 2019 - 2019 IEEE International Conference on
Communications (ICC), 2019, pp. 1-7.

I. Butun, A. Sari, and P. Osterberg, “Hardware security of fog
end-devices for the internet of things,” Sensors, vol. 20, no. 20, 2020.
[Online]. Available: https://www.mdpi.com/1424-8220/20/20/5729

K. Yang, D. Blaauw, and D. Sylvester, “Hardware designs for security
in ultra-low-power IoT systems: An overview and survey,” IEEE Micro,
vol. 37, no. 6, pp. 72-89, nov 2017.

C. Shepherd, G. Arfaoui, I. Gurulian, R. P. Lee, K. Markantonakis,
R. N. Akram, D. Sauveron, and E. Conchon, “Secure and trusted
execution: Past, present, and future - a critical review in the context
of the internet of things and cyber-physical systems,” in 2016 IEEE
Trustcom/BigDataSE/ISPA. 1EEE, aug 2016, pp. 168-177.

A. Ehret, K. Gettings, B. R. Jordan, and M. A. Kinsy, “A survey on
hardware security techniques targeting low-power soc designs,” in 2019
IEEE High Performance Extreme Computing Conference (HPEC),
2019, pp. 1-8.

W. Hu, C.-H. Chang, A. Sengupta, S. Bhunia, R. Kastner, and H. Li,
“An overview of hardware security and trust: Threats, countermeasures,
and design tools,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 40, no. 6, pp. 1010-1038, 2021.
ITU-T, “Y.2720 : Ngn identity management framework,” Tech.
Rep., 2009. [Online]. Available: https://www.itu.int/rec/dologin_pub.
asp?lang=e&id=T-REC-Y.2720-200901-1!'PDF-E&type=items

A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of
Applied Cryptography. CRC Press, dec 2018.

R. Maes, PUF-Based Entity Identification and Authentication. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2013, pp. 117-141. [Online].
Available: https://doi.org/10.1007/978-3-642-41395-7_5

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

[26]

[27]

[28]

[29]

[30]
[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[40]

P. Angin, B. Bhargava, R. Ranchal, N. Singh, M. Linderman, L. B.
Othmane, and L. Lilien, “An entity-centric approach for privacy and
identity management in cloud computing,” in 2010 29th IEEE Sympo-
sium on Reliable Distributed Systems. 1EEE, oct 2010.

Y. Cao and L. Yang, “A survey of identity management technology,”
in 2010 IEEE International Conference on Information Theory and
Information Security. 1EEE, dec 2010.

M. Gaedke, J. Meinecke, and M. Nussbaumer, “A modeling approach
to federated identity and access management,” in Special Interest
Tracks and Posters of the 14th International Conference on World
Wide Web, ser. WWW ’05. New York, NY, USA: Association
for Computing Machinery, 2005, p. 1156-1157. [Online]. Available:
https://doi.org/10.1145/1062745.1062916

D. W. Chadwick, Federated Identity Management. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2009, pp. 96-120. [Online]. Available:
https://doi.org/10.1007/978-3-642-03829-7_3

S. Cantor, J. Moreh, R. Philpott, and E. Maler, “Metadata for the oasis
security assertion markup language (saml) v2. 0,” 2005.

N. Sakimura, J. Bradley, M. Jones, B. De Medeiros, and C. Mortimore,
“Openid connect core 1.0,” The OpenID Foundation, p. S3, 2014.

D. Divyabharathi and N. G. Cholli, “A review on identity and access
management server (keycloak),” International Journal of Security and
Privacy in Pervasive Computing (IJSPPC), vol. 12, no. 3, pp. 46-53,
2020.

S. Cantor and T. Scavo, “Shibboleth architecture,” Protocols and
Profiles, vol. 10, p. 16, 2005.

P. R. Sousa, J. S. Resende, R. Martins, and L. Antunes, “The case
for blockchain in IoT identity management,” Journal of Enterprise
Information Management, vol. ahead-of-print, no. ahead-of-print, jun
2020.

D. Hardt, “The OAuth 2.0 Authorization Framework,” RFC 6749,
Oct. 2012. [Online]. Available: https://www.rfc-editor.org/info/rfc6749
A. Jgsang and S. Pope, “User centric identity management,” in
AusCERT Asia Pacific information technology security conference.
Citeseer, 2005, p. 77. [Online]. Available: http:/citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.60.1563&rep=rep | &type=pdf

J. Werner, C. M. Westphall, and C. B. Westphall, “Cloud
identity management: A survey on privacy strategies,” Computer
Networks, vol. 122, pp. 29-42, 2017. [Online]. Available: https:
/Iwww.sciencedirect.com/science/article/pii/S1389128617301664

S. Y. Lim, P. T. Fotsing, A. Almasri, O. Musa, M. L. M. Kiah, T. F.
Ang, and R. Ismail, “Blockchain technology the identity management
and authentication service disruptor: a survey,” International Journal
on Advanced Science, Engineering and Information Technology, vol. 8,
no. 4-2, pp. 1735-1745, 2018.

A. Miihle, A. Griiner, T. Gayvoronskaya, and C. Meinel, “A survey on
essential components of a self-sovereign identity,” Computer Science
Review, vol. 30, pp. 80-86, 2018.

Q. Feng, D. He, S. Zeadally, M. K. Khan, and N. Kumar, “A survey
on privacy protection in blockchain system,” Journal of Network and
Computer Applications, vol. 126, pp. 45-58, 2019.

P. Mahalle, S. Babar, N. R. Prasad, and R. Prasad, “Identity
management framework towards internet of things (iot): Roadmap
and key challenges,” in International Conference on Network
Security and Applications. Springer, 2010, pp. 430-439. [Online].
Available: https://sci-hub.se/https://link.springer.com/chapter/10.1007/
978-3-642-14478-3_43

K.-Y. Lam and C.-H. Chi, “Identity in the internet-of-things (iot):
New challenges and opportunities,” in International Conference on
Information and Communications Security. Springer International
Publishing, 2016, pp. 18-26. [Online]. Available: https://link.springer.
com/content/pdf/10.1007/978-3-319-50011-9_2.pdf

W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE internet of things journal, vol. 3, no. 5, pp.
637-646, 2016.

T. Nandy, M. Y. I. B. Idris, R. Md Noor, L. Mat Kiah, L. S. Lun, N. B.
Annuar Juma’at, I. Ahmedy, N. Abdul Ghani, and S. Bhattacharyya,
“Review on security of internet of things authentication mechanism,”
IEEE Access, vol. 7, pp. 151054-151 089, 2019.

M. El-hajj, A. Fadlallah, M. Chamoun, and A. Serhrouchni, “A survey
of internet of things (iot) authentication schemes,” Sensors, vol. 19,
no. 5, 2019. [Online]. Available: https://www.mdpi.com/1424-8220/
19/5/1141

M.-O. Pahl and L. Donini, “Giving iot services an identity and
changeable attributes,” in 2019 IFIP/IEEE Symposium on Integrated
Network and Service Management (IM). 1EEE, 2019, pp. 455-461.

[47]

[48]

[49]

[50]

[51]

[52]

[53]
[54]
[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]
[72]

25

R. Romén-Castro, J. Lopez, and S. Gritzalis, “Evolution and trends in
iot security,” Computer, vol. 51, no. 7, pp. 16-25, 2018.

K. Zhao and L. Ge, “A survey on the internet of things security,” in
2013 Ninth International Conference on Computational Intelligence
and Security, 2013, pp. 663-667.

R. Roman, P. Najera, and J. Lopez, “Securing the internet of things,”
Computer, vol. 44, no. 9, pp. 51-58, 2011.

H. A. Abdulghani, N. A. Nijdam, A. Collen, and D. Konstantas, “A
study on security and privacy guidelines, countermeasures, threats: Iot
data at rest perspective,” Symmetry, vol. 11, no. 6, p. 774, 2019.

M. Katagi, S. Moriai et al., “Lightweight cryptography for the internet
of things,” Sony Corporation, vol. 2008, pp. 7-10, 2008. [Online].
Available: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.
227.8445&rep=rep1&type=pdf

Z.-K. Zhang, M. C. Y. Cho, Z.-Y. Wu, and S. W. Shieh, “Identifying
and authenticating iot objects in a natural context,” Computer, vol. 48,
no. 08, pp. 81-83, 2015.

R. F. Rights, “Global information assurance certification paper,” GIAC,
2003.

M. Wolf, Computers as components: principles of embedded computing
system design. Elsevier, 2012.

C. Gu, Power On and Bootloader. Berkeley, CA: Apress, 2016, pp. 5—
25. [Online]. Available: https://doi.org/10.1007/978-1-4842-1919-5_2

C. O. Jasper van Woudenberg, The Hardware Hacking
Handbook. Random House LCC US, Dec. 2021. [Online].
Available: https://www.ebook.de/de/product/31189064/jasper_van_

woudenberg_colin_o_flynn_the_hardware_hacking_handbook.html
“Security requirements for cryptographic modules,” Tech. Rep., may
2001.

K. Markantonakis et al., “Enhancing the conditional access module
security in light of smart card sharing attacks,” Presentation, Informa-
tion Security Group Smart Card Centre, Royal Holloway, University of
London. Accessed at on Oct, vol. 20, 2008.

C. S. Johnson, M. L. Badger, D. A. Waltermire, J. Snyder, and
C. Skorupka, “Guide to cyber threat information sharing,” Tech. Rep.,
oct 2016.

C. L. Smith and D. J. Brooks, “Chapter 3 - security risk management,”
in Security Science, C. L. Smith and D. J. Brooks, Eds. Boston:
Butterworth-Heinemann, 2013, pp. 51-80. [Online]. Available: https:
/Iwww.sciencedirect.com/science/article/pii/B9780123944368000035
S. P. Skorobogatov, “Semi-invasive attacks: a new approach to hardware
security analysis,” 2005.

M. T. Rahman, Q. Shi, S. Tajik, H. Shen, D. L. Woodard, M. Tehra-
nipoor, and N. Asadizanjani, “Physical inspection & attacks: New fron-
tier in hardware security,” in 2018 IEEE 3rd International Verification
and Security Workshop (IVSW). 1EEE, jul 2018, pp. 93-102.

M. G. Rekoff, “On reverse engineering,” IEEE Transactions on Sys-
tems, Man, and Cybernetics, vol. SMC-15, no. 2, pp. 244-252, 1985.
R. Torrance and D. James, “The state-of-the-art in ic reverse engi-
neering,” in Cryptographic Hardware and Embedded Systems - CHES
2009, C. Clavier and K. Gaj, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2009, pp. 363-381.

R. C. Gilberg, R. M. Knowles, P. Moroney, and W. A. Shumate, “Secure
integrated circuit chip with conductive shield,” Jun. 12 1990, uS Patent
4,933,898.

S. H. Weingart, “Physical security devices for computer subsystems:
A survey of attacks and defenses,” in International Workshop on
Cryptographic Hardware and Embedded Systems. Springer, 2000,
pp. 302-317.

S. Manich, M. S. Wamser, and G. Sigl, “Detection of probing attempts
in secure ics,” in 2012 IEEE International Symposium on Hardware-
Oriented Security and Trust. 1EEE, 2012, pp. 134—139.

M. Nagata, “Exploring fault injection attack resilience of secure ic
chips,” in 2022 IEEE International Reliability Physics Symposium
(IRPS). 1EEE, 2022, pp. 11C-1.

S. Skorobogatov, “How microprobing can attack encrypted memory,” in
2017 Euromicro Conference on Digital System Design (DSD). 1EEE,
2017, pp. 244-251.

A. Mohammadi, M. Ebrahimi, A. Ejlali, and S. G. Miremadi, “Scfit:
A fpga-based fault injection technique for seu fault model,” in 2072
Design, Automation & Test in Europe Conference & Exhibition (DATE).
IEEE, 2012, pp. 586-589.

C. O’Flynn, “Getting root on philips hue bridge 2.0,” 2016.

N. Timmers, A. Spruyt, and M. Witteman, “Controlling pc on arm using
fault injection,” in 2016 Workshop on Fault Diagnosis and Tolerance
in Cryptography (FDTC). IEEE, 2016, pp. 25-35.

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

[73]

[74]

[75]

[76]

[771

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]
[87]

[88]

[89]

[90]

[91]

[92]

[93]
[94]

[95]

M. Witteman and M. Oostdijk, “Secure application programming in
the presence of side channel attacks,” in RSA conference, vol. 2008.
S. Endo, Y. Li, N. Homma, K. Sakiyama, K. Ohta, and T. Aoki,
“An efficient countermeasure against fault sensitivity analysis using
configurable delay blocks,” in 2012 Workshop on Fault Diagnosis and
Tolerance in Cryptography. 1EEE, 2012, pp. 95-102.

M. Nagata, T. Miki, and N. Miura, “Physical attack protection tech-
niques for ic chip level hardware security,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 30, no. 1, pp. 5-14, 2021.
L. Zussa, A. Dehbaoui, K. Tobich, J.-M. Dutertre, P. Maurine,
L. Guillaume-Sage, J. Clediere, and A. Tria, “Efficiency of a glitch
detector against electromagnetic fault injection,” in 2014 Design,
Automation & Test in Europe Conference & Exhibition (DATE), Mar.
2014, pp. 1-6, iSSN: 1558-1101.

N. Miura, D. Fujimoto, D. Tanaka, Y.-i. Hayashi, N. Homma, T. Aoki,
and M. Nagata, “A local EM-analysis attack resistant cryptographic
engine with fully-digital oscillator-based tamper-access sensor,” in 2014
Symposium on VLSI Circuits Digest of Technical Papers, Jun. 2014, pp.
1-2, iSSN: 2158-5636.

Y. Araga, M. Nagata, H. Ikeda, T. Miki, N. Miura, N. Watanabe,
H. Shimamoto, and K. Kikuchi, “A Thick Cu Layer Buried in Si
Interposer Backside for Global Power Routing,” IEEE Transactions on
Components, Packaging and Manufacturing Technology, vol. 9, no. 3,
pp- 502-510, Mar. 2019.

S. Bhunia and M. Tehranipoor, “Chapter 8 - side-channel attacks,”
in Hardware Security, S. Bhunia and M. Tehranipoor, Eds.
Morgan Kaufmann, 2019, pp. 193-218. [Online]. Available: https:
/Iwww.sciencedirect.com/science/article/pii/B9780128124772000137
D. Brumley and D. Boneh, “Remote timing attacks are practical,”
Computer Networks, vol. 48, no. 5, pp. 701-716, 2005.

J.-F. Dhem, F. Koeune, P-A. Leroux, P. Mestré, J.-J. Quisquater,
and J.-L. Willems, “A practical implementation of the timing attack,”
in International Conference on Smart Card Research and Advanced
Applications. Springer, 1998, pp. 167-182.

P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in
Annual international cryptology conference. Springer, 1999, pp.
388-397. [Online]. Available: https:/link.springer.com/content/pdf/10.
1007/3-540-48405-1_25.pdf

E. Ronen, A. Shamir, A.-O. Weingarten, and C. O’Flynn, “Iot goes
nuclear: Creating a zigbee chain reaction,” in 2017 IEEE Symposium
on Security and Privacy (SP). 1EEE, 2017, pp. 195-212.

J. Kramer, D. Nedospasov, A. Schlosser, and J.-P. Seifert, “Differential
photonic emission analysis,” in Constructive Side-Channel Analysis
and Secure Design, E. Prouff, Ed. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013, pp. 1-16.

A. Schlosser, D. Nedospasov, J. Kriamer, S. Orlic, and J.-P. Seifert,
“Simple photonic emission analysis of aes,” in International Workshop
on Cryptographic Hardware and Embedded Systems. Springer, 2012,
pp. 41-57.

J. Krimer, “Why cryptography should not rely on physical attack
complexity,” it-Information Technology, vol. 59, no. 1, pp. 53-56, 2017.
O. Kommerling and M. G. Kuhn, “Design principles for tamper-
resistant smartcard processors.” Smartcard, vol. 99, pp. 9-20, 1999.
V. Rozic, B. Yang, W. Dehaene, and 1. Verbauwhede, “Highly efficient
entropy extraction for true random number generators on fpgas,” in
2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC).
IEEE, 2015, pp. 1-6.

C. S. Petrie and J. A. Connelly, “A noise-based ic random number
generator for applications in cryptography,” IEEE Transactions on
Circuits and Systems I: Fundamental Theory and Applications, vol. 47,
no. 5, pp. 615-621, 2000.

J. Senden, “Biasing a ring-oscillator based true random number gen-
erator with an electro-magnetic fault injuction using harmonic waves,”
Master’s thesis, University of Twente, 2015.

P. Bayon, L. Bossuet, A. Aubert, and V. Fischer, “Electromagnetic
analysis on ring oscillator-based true random number generators,” in
2013 IEEE International Symposium on Circuits and Systems (ISCAS),
2013, pp. 1954-1957.

Y. Su, J. Wu, C. Long, and L. Wei, “Secure decentralized machine
identifiers for internet of things,” in Proceedings of the 2020 The 2nd
International Conference on Blockchain Technology, 2020, pp. 57-62.
M. Barr, “Memory types,” Embedded Systems Programming, vol. 14,
no. 5, pp. 103-104, 2001.

U. Gatti, “One-time programmable memories for harsh environments,”
Rad-hard Semiconductor Memories, p. 151, 2019.

C. M. Maxfield, “Chapter 15 - memory ics,” in Bebop to the
Boolean Boogie (Third Edition), third edition ed., C. M. Maxfield,

[96]

[971

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]
[116]
[117]

[118]

26

Ed. Boston: Newnes, 2009, pp. 193-212. [Online]. Available: https:
/lwww.sciencedirect.com/science/article/pii/B9781856175074000152
D. Kahng and S. M. Sze, “A floating gate and its application to memory
devices,” The Bell System Technical Journal, vol. 46, no. 6, pp. 1288—
1295, jul 1967.

C. M. Maxfield, “Chapter 16 - programmable ics,” in Bebop to the
Boolean Boogie (Third Edition), third edition ed., C. M. Maxfield,
Ed. Boston: Newnes, 2009, pp. 213-234. [Online]. Available: https:
/Iwww.sciencedirect.com/science/article/pii/B9781856175074000164
R. F. Rizzolo, T. G. Foote, J. M. Crafts, D. A. Grosch, T. O. Leung, D. J.
Lund, B. L. Mechtly, B. J. Robbins, T. J. Slegel, M. J. Tremblay et al.,
“Ibm system z9 efuse applications and methodology,” IBM Journal of
Research and Development, vol. 51, no. 1.2, pp. 65-75, 2007.

H. Divva, A. P. Chavan, and S. Krishnamurthy, “Design and verification
of ecc scheme to optimize area and tester time in otp rom controller,”
in 2019 4th International Conference on Recent Trends on Electronics,
Information, Communication & Technology (RTEICT), 2019, pp. 151—
155.

J.-M. Schmidt, M. Hutter, and T. Plos, “Optical fault attacks on aes: A
threat in violet,” in 2009 Workshop on Fault Diagnosis and Tolerance
in Cryptography (FDTC). 1EEE, 2009, pp. 13-22.

——, “Optical fault attacks on aes: A threat in violet,” in 2009
Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC).
IEEE, 2009, pp. 13-22.

M. Hutle and M. Kammerstetter, “Chapter 4 - Resilience Against
Physical Attacks,” F. Skopik and P. Smith, Eds. Boston: Syngress,
Jan. 2015, pp. 79-112. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/B9780128021224000043

S. Skorobogatov, “Physical attacks and tamper resistance,” in Introduc-
tion to Hardware Security and Trust. Springer, 2012, pp. 143-173.
M. Tunstall, Smart Card Security. Cham: Springer International
Publishing, 2017, pp. 217-251. [Online]. Available: https://doi.org/10.
1007/978-3-319-50500-8_9

J. Jung, J. Cho, and B. Lee, “A secure platform for iot devices based
on arm platform security architecture,” in 2020 14th International Con-
ference on Ubiquitous Information Management and Communication
(IMCOM), 2020, pp. 1-4.

L. Bossuet, M. Grand, L. Gaspar, V. Fischer, and G. Gogniat, “Ar-
chitectures of flexible symmetric key crypto engines—a survey: From
hardware coprocessor to multi-crypto-processor system on chip,” ACM
Computing Surveys (CSUR), vol. 45, no. 4, pp. 1-32, 2013.

S. Gueron, “Intel advanced encryption standard (aes) instructions set,”
Intel White Paper, Rev, vol. 3, pp. 1-94, 2010.

I ARM, “Armv8-a architecture reference
ual,” URL: https://documentation-service.
com/static/60e6f8573d73a34b640e0cee, 2015.

L. Gaspar, V. Fischer, F. Bernard, L. Bossuet, and P. Cotret, “Hcrypt:
a novel concept of crypto-processor with secured key management,”
in 2010 International Conference on Reconfigurable Computing and
FPGAs. 1IEEE, 2010, pp. 280-285.

S. A. Rotondo, Trusted Computing Group. Boston, MA: Springer
US, 2011, pp. 1331-1331. [Online]. Available: https://doi.org/10.1007/
978-1-4419-5906-5_498

S. L. Kinney, Trusted Platform Module Basics: Using TPM in Embed-
ded Systems. USA: Newnes, 2006.

T. C. Group, “Trusted platform module library part 1:
Architecture,” Trusted Computing Group, Tech. Rep. 01.59,
Nov. 2019. [Online]. Available: https:/trustedcomputinggroup.org/
wp-content/uploads/TCG_TPM?2_r1p59_Partl_Architecture_pub.pdf
K. Murdock, D. Oswald, F. D. Garcia, J. Van Bulck, D. Gruss, and
F. Piessens, “Plundervolt: Software-based fault injection attacks against
intel sgx,” in 2020 IEEE Symposium on Security and Privacy (SP).
IEEE, 2020, pp. 1466-1482.

S. Saab, P. Rohatgi, and C. Hampel, “Side-channel protections for
cryptographic instruction set extensions,” Cryptology ePrint Archive,
2016.

Y. Lu, “Attacking hardware aes
arXiv:1902.08693, 2019.

T. C. Group, “Profile pc client specific trusted platform module tpm
family 2.0,” Trusted Computing Group, Tech. Rep. 1.3, Sep. 2021.
“Fips 140-3 - security requirements for cryptographic modules,” Tech.
Rep., apr 2019.

B. Pearson, C. Zou, Y. Zhang, Z. Ling, and X. Fu, “Sic 2: Securing
microcontroller based iot devices with low-cost crypto coprocessors,” in
2020 IEEE 26th International Conference on Parallel and Distributed
Systems (ICPADS). 1EEE, 2020, pp. 372-381.

man-
arm.

with dfa,)” arXiv preprint

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]
[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

Z. Zieliski, J. Chudzikiewicz, and J. Furtak, An Approach to
Integrating Security and Fault Tolerance Mechanisms into the Military
IoT. Cham: Springer International Publishing, 2019, pp. 111-128.
[Online]. Available: https://doi.org/10.1007/978-3-030-02807-7_6

R. Toegl, “Tagging the turtle: Local attestation for kiosk computing,”
in Advances in Information Security and Assurance, J. H. Park, H.-H.
Chen, M. Atiquzzaman, C. Lee, T.-h. Kim, and S.-S. Yeo, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2009, pp. 60-69.

N. Kuntze, A. Fuchs, and C. Rudolph, “Reliable identities using off-the-
shelf hardware security in manets,” in 2009 International Conference
on Computational Science and Engineering, vol. 2. IEEE, 2009, pp.

781-786.
G. Inc, “Introduction to secure elements,” May 2018.
[Online]. Available: https://globalplatform.org/wp-content/uploads/

2018/05/Introduction-to-Secure- Element- 15May2018.pdf

A. Umar and K. Mayes, Trusted Execution Environment and Host
Card Emulation. Cham: Springer International Publishing, 2017.
[Online]. Available: https://doi.org/10.1007/978-3-319-50500-8_18

B. Lepojevi¢, D. Simi¢, and A. Radulovié, “Architecture of tsm
solutions in systems based on nfc technology,” 2012.

NXP, “P5cx012/02x/40/73/80/144 family,” Jan. 2008.

B. Lepojevic, B. Pavlovic, and A. Radulovic, “Implementing nfc
service security—se vs tee vs hee,” in SYMORG Conference, 2014.

K. Mayes and T. Evans, Smart Cards and Security for Mobile Commu-
nications. Cham: Springer International Publishing, 2017, pp. 93-128.
[Online]. Available: https://doi.org/10.1007/978-3-319-50500-8_4

S. Mangard, E. Oswald, and T. Popp, Power analysis attacks: Revealing
the secrets of smart cards. Springer Science & Business Media, 2008,
vol. 31.

K. E. Mayes and K. Markantonakis, Smart cards, tokens, security and
applications. Springer, 2008, vol. 1.

V. Lomne, “Common criteria certification of a smartcard: a technical
overview,” in CHES, 2016.

E. B. Sanjuan, I. A. Cardiel, J. A. Cerrada, and C. Cerrada, “Message
queuing telemetry transport (mqtt) security: a cryptographic smart card
approach,” IEEE Access, vol. 8, pp. 115051-115 062, 2020.

Y. Jeon and Y. Kang, “Implementation of a lorawan protocol processing
module on an embedded device using secure element,” in 2019 34th
International Technical Conference on Circuits/Systems, Computers
and Communications (ITC-CSCC), 2019, pp. 1-3.

B. S. S. B.V, “Bosch ip video and data security guidebook,”
Bosch, techreport 2.0, Apr. 2021. [Online]. Available:
https://resources-boschsecurity-cdn.azureedge.net/public/documents/
Data_Security_Guideb_Special_enUS_9007221590612491.pdf

C. Lesjak, T. Ruprechter, J. Haid, H. Bock, and E. Brenner, “A secure
hardware module and system concept for local and remote industrial
embedded system identification,” in Proceedings of the 2014 IEEE
Emerging Technology and Factory Automation (ETFA), 2014, pp. 1-7.
C. Lesjak, T. Ruprechter, H. Bock, J. Haid, and E. Brenner, “Estado
— enabling smart services for industrial equipment through a secured,
transparent and ad-hoc data transmission online,” in The 9th Interna-
tional Conference for Internet Technology and Secured Transactions
(ICITST-2014), 2014, pp. 171-177.

R. N. Akram, P.-F. Bonnefoi, S. Chaumette, K. Markantonakis, and
D. Sauveron, “Improving security of autonomous uavs fleets by using
new specific embedded secure elements-a position paper,” in 2nd
AETOS international conference on “Research challenges for future
RPAS/UAV systems”, Bordeaux, France, 2014.

I. GlobalPlatform, “Tee system architecture,” GlobalPlat-
form Technology, techreport GPD_SPE_009, 2018. [On-
line]. Available: https://globalplatform.org/wp-content/uploads/2018/
09/GPD_TEE_SystemArch_v1.1.0.10-for-v1.2_PublicReview.pdf

A. Vasudevan, E. Owusu, Z. Zhou, J. Newsome, and J. M.
McCune, “Trustworthy execution on mobile devices: What security
properties can my mobile platform give me?” in International
conference on trust and trustworthy computing. Springer, 2012,
pp. 159-178. [Online]. Available: https://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.220.220&rep=rep 1 &type=pdf

I. GlobalPlatform, “Trusted user interface api,” Glob-
alPlatform, techreport ~ GPD_SPE_020, Jun. 2013. [On-
line]. Available: {https://globalplatform.org/wp-content/uploads/2013/
06/GlobalPlatform_Trusted_User_Interface_API_v1.0.pdf}

T. Alves, “Trustzone: Integrated hardware and software security,” White
paper, 2004.

V. Costan and S. Devadas, “Intel sgx explained.” IACR Cryptol.
ePrint Arch., vol. 2016, no. 86, pp. 1-118, 2016. [Online]. Available:
http://css.csail.mit.edu/6.858/2020/readings/costan-sgx.pdf

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

27

A. Rao, “Rising to the challenge - data security with intel
confidential computing,” Intel, Feb. 2022. [Online]. Available:
https://community.intel.com/t5/Blogs/Products-and- Solutions/Security/
Rising-to-the-Challenge- Data- Security- with-Intel- Confidential/post/
1353141

M. McReynolds, “Azure announces next generation intel sgx
confidential computing vms,” Nov. 2021. [Online]. Available:
https://techcommunity.microsoft.com/t5/azure-confidential-computing/
azure-announces-next- generation-intel-sgx-confidential-computing/
ba-p/2839934

S. Pinto and N. Santos, “Demystifying arm trustzone: A comprehensive
survey,” ACM Computing Surveys (CSUR), vol. 51, no. 6, pp. 1-36,
2019.

H. Yang and M. Lee, “Demystifying arm trustzone tee client api using
op-tee,” in The 9th International Conference on Smart Media and
Applications, 2020, pp. 325-328.

T. Firmware, “Open portable trusted execution environment,” 2013.
[Online]. Available: https://www.op-tee.org/

B. McGillion, T. Dettenborn, T. Nyman, and N. Asokan, “Open-
TEE — an open virtual trusted execution environment,” in 2015 IEEE
Trustcom/BigDataSE/ISPA. 1EEE, aug 2015.

N. Zhang, H. Sun, K. Sun, W. Lou, and Y. T. Hou, “Cachekit:
Evading memory introspection using cache incoherence,” in 2016 IEEE
European Symposium on Security and Privacy (EuroS&P). 1EEE,
2016, pp. 337-352.

M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Mangard,
“{ARMageddon}: Cache attacks on mobile devices,” in 25th USENIX
Security Symposium (USENIX Security 16), 2016, pp. 549-564.

R. Guanciale, H. Nemati, C. Baumann, and M. Dam, “Cache storage
channels: Alias-driven attacks and verified countermeasures,” in 2016
IEEE Symposium on Security and Privacy (SP). 1EEE, 2016, pp.
38-55.

N. Zhang, K. Sun, D. Shands, W. Lou, and Y. T. Hou, “Truspy:
Cache side-channel information leakage from the secure world on arm
devices,” Cryptology ePrint Archive, 2016.

A. Machiry, E. Gustafson, C. Spensky, C. Salls, N. Stephens, R. Wang,
A. Bianchi, Y. R. Choe, C. Kruegel, and G. Vigna, “Boomerang:
Exploiting the semantic gap in trusted execution environments.” in
NDSS, 2017.

Z. Istvan, P. Rosero, and P. Bonnet, “Always-trusted iot—making iot
devices trusted with minimal overhead.”

Intel, “linux-sgx,” Github, 2015. [Online]. Available: https://github.
com/intel/linux-sgx

A. Nilsson, P. N. Bideh, and J. Brorsson, “A survey of published attacks
on intel sgx,” arXiv preprint arXiv:2006.13598, 2020.

A. Brandido, J. S. Resende, and R. Martins, “Hardening cryptographic
operations through the use of secure enclaves,” Computers & Security,
vol. 108, p. 102327, 2021.

V. Shanbhogue, J. W. Brandt, and J. Wiedemeier, ‘“Protecting informa-
tion processing system secrets from debug attacks,” Feb. 10 2015, uS
Patent 8,955,144.

G. Chen, W. Wang, T. Chen, S. Chen, Y. Zhang, X. Wang, T.-H.
Lai, and D. Lin, “Racing in hyperspace: Closing hyper-threading side
channels on sgx with contrived data races,” in 2018 IEEE Symposium
on Security and Privacy (SP), 2018, pp. 178-194.

S. Lee, M.-W. Shih, P. Gera, T. Kim, H. Kim, and M. Peinado,
“Inferring fine-grained control flow inside {SGX} enclaves with branch
shadowing,” in 26th USENIX Security Symposium (USENIX Security
17), 2017, pp. 557-574.

P. Kocher, J. Horn, A. Fogh, , D. Genkin, D. Gruss, W. Haas,
M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and
Y. Yarom, “Spectre attacks: Exploiting speculative execution,” in 40th
1IEEE Symposium on Security and Privacy (S&P’19), 2019.

M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg,
“Meltdown: Reading kernel memory from user space,” in 27th USENIX
Security Symposium (USENIX Security 18), 2018.

G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai, “Sgxpectre:
Stealing intel secrets from sgx enclaves via speculative execution,” in
2019 IEEE European Symposium on Security and Privacy (EuroS&P).
IEEE, 2019, pp. 142-157.

J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci,
F. Piessens, M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx,
“Foreshadow: Extracting the keys to the intel {SGX} kingdom with
transient {Out-of-Order} execution,” in 27th USENIX Security Sympo-
sium (USENIX Security 18), 2018, pp. 991-1008.

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

[164]

[165]

[166]

[167]
[168]

[169]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

[177]

[178]

[179]

[180]

[181]

[182]

[183]

C. Canella, D. Genkin, L. Giner, D. Gruss, M. Lipp, M. Minkin,
D. Moghimi, F. Piessens, M. Schwarz, B. Sunar, J. Van Bulck, and
Y. Yarom, “Fallout: Leaking data on meltdown-resistant cpus,” in
Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’19. New York, NY, USA:
Association for Computing Machinery, 2019, p. 769-784. [Online].
Available: https://doi.org/10.1145/3319535.3363219

S. Van Schaik, A. Milburn, S. Osterlund, P. Frigo, G. Maisuradze,
K. Razavi, H. Bos, and C. Giuffrida, “Ridl: Rogue in-flight data load,”
in 2019 IEEE Symposium on Security and Privacy (SP). 1EEE, 2019,
pp- 88-105.

M. Schwarz, M. Lipp, D. Moghimi, J. Van Bulck, J. Stecklina,
T. Prescher, and D. Gruss, “Zombieload: Cross-privilege-boundary data
sampling,” in Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, 2019, pp. 753-768.

H. Vill, “Sgx attestation process,” 2017.

J. Van Bulck, D. Oswald, E. Marin, A. Aldoseri, F. D. Garcia, and
F. Piessens, “A tale of two worlds: Assessing the vulnerability of
enclave shielding runtimes,” in Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, 2019, pp.
1741-1758.

NIST, “National vulnerability database,” 2022. [Online].
Available: https://nvd.nist.gov/vuln/search/results ?form_type=
Basic&results_type=overview&query=TrustZone&search_type=
all&isCpeNameSearch=false

D. Cerdeira, N. Santos, P. Fonseca, and S. Pinto, “SoK: Understanding
the prevailing security vulnerabilities in TrustZone-assisted TEE sys-
tems,” in 2020 IEEE Symposium on Security and Privacy (SP). IEEE,
may 2020.

F. Brasser, U. Miiller, A. Dmitrienko, K. Kostiainen, S. Capkun,
and A.-R. Sadeghi, “Software grand exposure:{SGX} cache attacks
are practical,” in 11th USENIX Workshop on Offensive Technologies
(WOOT 17), 2017.

A. Moghimi, G. Irazoqui, and T. Eisenbarth, “Cachezoom: How sgx
amplifies the power of cache attacks,” in International Conference on
Cryptographic Hardware and Embedded Systems. Springer, 2017, pp.
69-90.

S. K. Bukasa, R. Lashermes, H. L. Bouder, J.-L. Lanet, and A. Legay,
“How trustzone could be bypassed: Side-channel attacks on a modern
system-on-chip,” in IFIP International Conference on Information
Security Theory and Practice. Springer, 2017, pp. 93-109.

Z. Chen, G. Vasilakis, K. Murdock, E. Dean, D. Oswald, and F. D.
Garcia, “{VoltPillager}: Hardware-based fault injection attacks against
intel {SGX} enclaves using the {SVID} voltage scaling interface,” in
30th USENIX Security Symposium (USENIX Security 21), 2021, pp.
699-716.

S. Gueron, “A memory encryption engine suitable for general purpose
processors,” Cryptology ePrint Archive, 2016.

C. Lesjak, D. Hein, and J. Winter, “Hardware-security technologies for
industrial iot: Trustzone and security controller,” in IJECON 2015-41st
Annual Conference of the IEEE Industrial Electronics Society. 1EEE,
2015, pp. 002 589-002 595.

Z. Ling, H. Yan, X. Shao, J. Luo, Y. Xu, B. Pearson, and X. Fu, “Secure
boot, trusted boot and remote attestation for arm trustzone-based iot
nodes,” Journal of Systems Architecture, vol. 119, p. 102240, 2021.
J. Wang, Z. Hong, Y. Zhang, and Y. Jin, “Enabling security-enhanced
attestation with intel sgx for remote terminal and iot,” IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 37, no. 1, pp. 88-96, 2018.

A. Durand, P. Gremaud, J. Pasquier, and U. Gerber, “Trusted
lightweight communication for iot systems using hardware security,”
in Proceedings of the 9th International Conference on the Internet of
Things, 2019, pp. 1-4.

M. Jianhua, Z. Qiaoyan, and H. Guotian, “Authenticity verification
scheme based on tee and blockchain,” in 2021 18th International Com-
puter Conference on Wavelet Active Media Technology and Information
Processing (ICCWAMTIP). 1EEE, 2021, pp. 141-144.

T. Weingaertner and O. Camenzind, “Identity of things: Applying
concepts from self sovereign identity to iot devices,” The Journal of
The British Blockchain Association, p. 21244, 2021.

R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld, “Physical one-way
functions,” Science, vol. 297, no. 5589, pp. 2026-2030, 2002.

P. Tuyls, B. gkoric’, S. Stallinga, A. H. Akkermans, and W. Ophey,
“Information-theoretic security analysis of physical uncloneable func-
tions,” in International Conference on Financial Cryptography and
Data Security. Springer, 2005, pp. 141-155.

[184]

[185]

[186]

[187]

[188]

[189]

[190]

[191]

[192]

[193]

[194]

[195]

[196]

[197]

[198]

[199]

[200]

[201]

[202]

[203]

28

B. Skori¢, P. Tuyls, and W. Ophey, “Robust key extraction from phys-
ical uncloneable functions,” in International Conference on Applied
Cryptography and Network Security. Springer, 2005, pp. 407-422.
G. A. Fink, D. V. Zarzhitsky, T. E. Carroll, and E. D. Farquhar,
“Security and privacy grand challenges for the internet of things,”
in 2015 International Conference on Collaboration Technologies and
Systems (CTS). 1EEE, 2015, pp. 27-34.

Y. Atwady and M. Hammoudeh, “A survey on authentication
techniques for the internet of things,” in Proceedings of the
International Conference on Future Networks and Distributed
Systems, ser. ICENDS *17. New York, NY, USA: Association for
Computing Machinery, 2017. [Online]. Available: https://doi.org/10.
1145/3102304.3102312

M. Mamdouh, A. I. Awad, A. A. Khalaf, and H. F
Hamed, “Authentication and identity management of ioht devices:
Achievements, challenges, and future directions,” Computers
& Security, vol. 111, p. 102491, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167404821003151
C. Herder, M.-D. Yu, F. Koushanfar, and S. Devadas, “Physical
unclonable functions and applications: A tutorial,” Proceedings of the
IEEE, vol. 102, no. 8, pp. 1126-1141, 2014.

H. Kang, Y. Hori, T. Katashita, M. Hagiwara, and K. Iwamura,
“Cryptographie key generation from puf data using efficient fuzzy ex-
tractors,” in 16th International conference on advanced communication
technology. IEEE, 2014, pp. 23-26.

J. Guajardo, S. S. Kumar, G.-J. Schrijen, and P. Tuyls, “Fpga intrinsic
pufs and their use for ip protection,” in International workshop on
cryptographic hardware and embedded systems. Springer, 2007, pp.
63-80.

U. Rithrmair, H. Busch, and S. Katzenbeisser, “Strong pufs: models,
constructions, and security proofs,” in Towards hardware-intrinsic
security. Springer, 2010, pp. 79-96.

U. Riithrmair and D. E. Holcomb, “Pufs at a glance,” in 2014 Design,
Automation & Test in Europe Conference & Exhibition (DATE). 1EEE,
2014, pp. 1-6.

D. Nedospasov, J.-P. Seifert, C. Helfmeier, and C. Boit, “Invasive puf
analysis,” in 2013 Workshop on Fault Diagnosis and Tolerance in
Cryptography. 1EEE, 2013, pp. 30-38.

U. Riihrmair, F. Sehnke, J. Solter, G. Dror, S. Devadas, and J. Schmid-
huber, “Modeling attacks on physical unclonable functions,” in Pro-
ceedings of the 17th ACM conference on Computer and communica-
tions security, 2010, pp. 237-249.

G. T. Becker, “On the pitfalls of using arbiter-pufs as building blocks,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 34, no. 8, pp. 1295-1307, 2015.

N. Wisiol, C. Miihl, N. Pirnay, P. H. Nguyen, M. Margraf, J.-P.
Seifert, M. van Dijk, and U. Riihrmair, “Splitting the interpose puf: A
novel modeling attack strategy,” IACR Transactions on Cryptographic
Hardware and Embedded Systems, pp. 97-120, 2020.

A. Vijayakumar and S. Kundu, “A novel modeling attack resistant puf
design based on non-linear voltage transfer characteristics,” in 2015
Design, Automation & Test in Europe Conference & Exhibition (DATE).
IEEE, 2015, pp. 653-658.

A. Mahmoud, U. Rithrmair, M. Majzoobi, and F. Koushanfar, “Com-
bined modeling and side channel attacks on strong pufs.” JACR Cryptol.
ePrint Arch., vol. 2013, p. 632, 2013.

A. Vijayakumar, V. C. Patil, C. B. Prado, and S. Kundu, “Machine
learning resistant strong puf: Possible or a pipe dream?” in 2016
IEEE international symposium on hardware oriented security and trust
(HOST). IEEE, 2016, pp. 19-24.

J. Delvaux, R. Peeters, D. Gu, and I. Verbauwhede, “A survey on
lightweight entity authentication with strong PUFs,” ACM Computing
Surveys, vol. 48, no. 2, pp. 1-42, nov 2015.

A. Mahmoud, U. Riihrmair, M. Majzoobi, and F. Koushanfar, “Com-
bined modeling and side channel attacks on strong pufs,” Cryptology
ePrint Archive, 2013.

S. Tajik, E. Dietz, S. Frohmann, H. Dittrich, D. Nedospasov,
C. Helfmeier, J.-P. Seifert, C. Boit, and H.-W. Hiibers, “Photonic
side-channel analysis of arbiter pufs,” Journal of Cryptology,
vol. 30, no. 2, pp. 550-571, Apr 2017. [Online]. Available:
https://doi.org/10.1007/s00145-016-9228-6

D. Merli, D. Schuster, F. Stumpf, and G. Sigl, “Semi-invasive em
attack on fpga ro pufs and countermeasures,” in Proceedings of the
Workshop on Embedded Systems Security, ser. WESS *11. New York,
NY, USA: Association for Computing Machinery, 2011. [Online].
Available: https://doi.org/10.1145/2072274.2072276

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

[204]

[205]

[206]

[207]

[208]

[209]

[210]

[211]

[212]

[213]

[214]

[215]

[216]

[217]

[218]

[219]

[220]

[221]

[222]

[223]

[224]

D. Nedospasov, J.-P. Seifert, C. Helfmeier, and C. Boit, “Invasive puf
analysis,” in 2013 Workshop on Fault Diagnosis and Tolerance in
Cryptography. 1EEE, 2013, pp. 30-38.

A. R. Korenda, F. Afghah, B. Cambou, and C. Philabaum, “A proof
of concept SRAM-based physically unclonable function (PUF) key
generation mechanism for IoT devices,” in 2019 16th Annual IEEE
International Conference on Sensing, Communication, and Networking
(SECON). IEEE, jun 2019.

C. Bohm, M. Hofer, and W. Pribyl, “A microcontroller sram-puf,” in
2011 5th International Conference on Network and System Security.
IEEE, 2011, pp. 269-273.

D. Mukhopadhyay, “Pufs as promising tools for security in internet of
things,” IEEE Design & Test, vol. 33, no. 3, pp. 103-115, 2016.

M. A. Qureshi and A. Munir, “PUF-IPA: A PUF-based identity
preserving protocol for internet of things authentication,” in 2020 IEEE
17th Annual Consumer Communications & Networking Conference
(CCNC), IEEE. IEEE, jan 2020, pp. 1-7.

K. B. Frikken, M. Blanton, and M. J. Atallah, “Robust authentication
using physically unclonable functions,” in Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2009, pp. 262-277.

B. Gassend, D. Clarke, M. van Dijk, and S. Devadas, “Silicon physical
random functions,” in Proceedings of the 9th ACM conference on
Computer and communications security - CCS '02. ACM Press, 2002.
D. Lim, J. Lee, B. Gassend, G. Suh, M. van Dijk, and S. Devadas,
“Extracting secret keys from integrated circuits,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 13, no. 10, pp.
1200-1205, oct 2005.

U. Rithrmair, F. Sehnke, J. Solter, G. Dror, S. Devadas, and J. Schmid-
huber, “Modeling attacks on physical unclonable functions,” in Pro-
ceedings of the 17th ACM conference on Computer and communica-
tions security. ACM Press, 2010, pp. 237-249.

B. Gassend, D. Clarke, M. van Dijk, and S. Devadas, “Controlled phys-
ical random functions,” in /8th Annual Computer Security Applications
Conference, 2002. Proceedings. 1EEE Comput. Soc, 2002.

M. Majzoobi, F. Koushanfar, and M. Potkonjak, “Lightweight secure
PUFs,” in 2008 IEEE/ACM International Conference on Computer-
Aided Design. 1EEE, nov 2008.

M. Majzoobi, M. Rostami, F. Koushanfar, D. S. Wallach, and S. De-
vadas, “Slender PUF protocol: A lightweight, robust, and secure
authentication by substring matching,” in 2012 IEEE Symposium on
Security and Privacy Workshops. 1EEE, may 2012.

J. Delvaux and I. Verbauwhede, “Fault injection modeling attacks on
65 nm arbiter and RO sum PUFs via environmental changes,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 61, no. 6,
pp. 1701-1713, jun 2014.

U. Kocabag, A. Peter, S. Katzenbeisser, and A.-R. Sadeghi, “Con-
verse puf-based authentication,” in Trust and Trustworthy Computing,
S. Katzenbeisser, E. Weippl, L. J. Camp, M. Volkamer, M. Reiter, and
X. Zhang, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012,
pp. 142-158.

M.-D. Yu, M. Hiller, J. Delvaux, R. Sowell, S. Devadas, and I. Ver-
bauwhede, “A lockdown technique to prevent machine learning on
PUFs for lightweight authentication,” IEEE Transactions on Multi-
Scale Computing Systems, vol. 2, no. 3, pp. 146-159, jul 2016.

Y. Gao, H. Ma, S. F. Al-Sarawi, D. Abbott, and D. C. Ranas-
inghe, “PUF-FSM: A controlled strong PUF,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, pp. 1-1,
2017.

A. Braeken, “Puf based authentication protocol for iot,” Symmetry,
vol. 10, no. 8, p. 352, 2018.

U. Chatterjee, V. Govindan, R. Sadhukhan, D. Mukhopadhyay, R. S.
Chakraborty, D. Mahata, and M. M. Prabhu, “Building PUF based
authentication and key exchange protocol for IoT without explicit CRPs
in verifier database,” IEEE Transactions on Dependable and Secure
Computing, vol. 16, no. 3, pp. 424-437, may 2019.

M. Ebrahimabadi, M. Younis, and N. Karimi, “A PUF-based modeling-
attack resilient authentication protocol for IoT devices,” IEEE Internet
of Things Journal, pp. 1-1, 2021.

Z. Huang and Q. Wang, “A puf-based unified identity verification
framework for secure iot hardware via device authentication,” World
Wide Web, vol. 23, no. 2, pp. 1057-1088, 2020.

J. Delvaux, D. Gu, D. Schellekens, and I. Verbauwhede, “Helper data
algorithms for PUF-based key generation: Overview and analysis,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 34, no. 6, pp. 889-902, jun 2015.

[225]

[226]

[227]

[228]

[229]

[230]

[231]

[232]

[233]

[234]

29

A. Shamsoshoara, A. Korenda, F. Afghah, and S. Zeadally, “A survey
on hardware-based security mechanisms for internet of things,” ArXiv.
org, 2019.

B. Skori¢, P. Tuyls, and W. Ophey, “Robust key extraction from
physical uncloneable functions,” pp. 407—422, 2005.

K. Kursawe, A.-R. Sadeghi, D. Schellekens, B. Skoric, and P. Tuyls,
“Reconfigurable physical unclonable functions - enabling technology
for tamper-resistant storage,” in 2009 IEEE International Workshop on
Hardware-Oriented Security and Trust. 1EEE, 2009.

G. Suh, C. O'Donnell, I. Sachdev, and S. Devadas, “Design and imple-
mentation of the AEGIS single-chip secure processor using physical
random functions,” in 32nd International Symposium on Computer
Architecture (ISCA'05). 1EEE, 2005.

G. E. Suh and S. Devadas, “Physical unclonable functions for device
authentication and secret key generation,” pp. 9-14, 2007. [Online].
Available: https://ieeexplore.ieee.org/abstract/document/4261134

I. Eichhorn, P. Koeberl, and V. van der Leest, “Logically reconfigurable
PUFs,” in Proceedings of the sixth ACM workshop on Scalable trusted
computing - STC '11. ACM Press, 2011.

L. Zhang, Z. H. Kong, and C.-H. Chang, “PCKGen: A phase change
memory based cryptographic key generator,” in 2013 IEEE Interna-
tional Symposium on Circuits and Systems (ISCAS2013). 1EEE, may
2013.

J. Zhang and G. Qu, “Physical unclonable function-based key sharing
via machine learning for IoT security,” IEEE Transactions on Industrial
Electronics, vol. 67, no. 8, pp. 7025-7033, aug 2020.

K. Murdock, D. Oswald, F. D. Garcia, J. Van Bulck, F. Piessens, and
D. Gruss, “Plundervolt: How a Little Bit of Undervolting Can Create
a Lot of Trouble,” IEEE Security & Privacy, vol. 18, no. 5, pp. 28-37,
Sep. 2020.

C. Tarnovsky, “Attacking tpm part 2 a look at the st19wpl8 tpm
device,” 2013.

